論文の概要: DRL-based Slice Placement under Realistic Network Load Conditions
- arxiv url: http://arxiv.org/abs/2109.12857v1
- Date: Mon, 27 Sep 2021 07:58:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 15:21:09.681688
- Title: DRL-based Slice Placement under Realistic Network Load Conditions
- Title(参考訳): リアルタイムネットワーク負荷条件下でのDRLに基づくスライス配置
- Authors: Jos\'e Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin and
Pierre Sens
- Abstract要約: 本稿では,Deep Reinforcement Learning(DRL)に基づくネットワークスライス配置最適化手法を提案する。
このソリューションは大規模かつ静止しない交通条件下でのネットワーク(すなわちネットワーク負荷)に適応する。
提案手法の適用性と,非制御DRLソリューションよりも高い,安定した性能を示す。
- 参考スコア(独自算出の注目度): 0.8459686722437155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose to demonstrate a network slice placement optimization solution
based on Deep Reinforcement Learning (DRL), referred to as
Heuristically-controlled DRL, which uses a heuristic to control the DRL
algorithm convergence. The solution is adapted to realistic networks with large
scale and under non-stationary traffic conditions (namely, the network load).
We demonstrate the applicability of the proposed solution and its higher and
stable performance over a non-controlled DRL-based solution. Demonstration
scenarios include full online learning with multiple volatile network slice
placement request arrivals.
- Abstract(参考訳): 本稿では,DRLアルゴリズムの収束をヒューリスティックで制御するDRL(Deep Reinforcement Learning)に基づくネットワークスライス配置最適化手法を提案する。
このソリューションは、大規模かつ非定常なトラフィック条件(すなわちネットワーク負荷)下での現実的なネットワークに適応する。
提案手法の適用性と,非制御DRLソリューションよりも高い,安定した性能を示す。
デモシナリオには、複数の揮発性ネットワークスライス配置要求到着を伴うフルオンライン学習が含まれる。
関連論文リスト
- Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
この問題に対処するために、ディジタルツイン(DT)高速化DRLソリューションを提案する。
ニューラルネットワークベースのDTは、システムをキューイングするためのカスタマイズされた出力層を備え、教師付き学習を通じてトレーニングされ、DRLモデルのトレーニングフェーズを支援するために使用される。
DT加速DRLは、直接訓練された最先端Q-ラーニングモデルと比較して、リソース利用率を40%以上向上させる。
論文 参考訳(メタデータ) (2023-10-07T09:09:19Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
次世代(NextG)ネットワークは、拡張現実(AR)やコネクテッド・自律走行車といった、インターネットの触覚を必要とするアプリケーションをサポートすることが期待されている。
データ駆動アプローチは、現在の運用条件に適応するネットワークの能力を改善することができる。
深部RL(DRL)は複雑な環境においても良好な性能を発揮することが示されている。
論文 参考訳(メタデータ) (2021-12-07T03:13:20Z) - Pessimistic Model Selection for Offline Deep Reinforcement Learning [56.282483586473816]
深層強化学習(DRL)は多くのアプリケーションにおいてシーケンシャルな意思決定問題を解決する大きな可能性を示している。
主要な障壁の1つは、DRLが学んだ政策の一般化性の低下につながる過度に適合する問題である。
理論的保証のあるオフラインDRLに対する悲観的モデル選択(PMS)手法を提案する。
論文 参考訳(メタデータ) (2021-11-29T06:29:49Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
我々は、純粋なDRLベースアルゴリズムとハイブリッドDRLヒューリスティックアルゴリズムである2つのDeep Reinforcement Learningアルゴリズムを比較した。
評価結果から,提案手法は純粋なDRLよりも予測不可能なネットワーク負荷変化の場合に,より堅牢で信頼性が高いことが示唆された。
論文 参考訳(メタデータ) (2021-08-05T10:24:33Z) - DRL-based Slice Placement Under Non-Stationary Conditions [0.8459686722437155]
我々は,非定常プロセスに従ってスライス要求が到着するという仮定の下で,最適ネットワークスライス配置のためのオンライン学習を検討する。
具体的には、2つの純DRLアルゴリズムと2つのハイブリッドDRLヒューリスティックアルゴリズムを提案する。
提案したハイブリッドDRLヒューリスティックアルゴリズムは、収束を達成するために、純DRLよりも少ない3桁の学習エピソードを必要とすることを示す。
論文 参考訳(メタデータ) (2021-08-05T10:05:12Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
強化学習 (Reinforcement Learning, RL) は, 意思決定および最適制御プロセスのための有望な解法として広く研究されている。
本稿では,Adaptive ADMM (asI-ADMM)アルゴリズムを提案する。
実験の結果,提案アルゴリズムは通信コストやスケーラビリティの観点から技術状況よりも優れており,複雑なIoT環境に適応できることがわかった。
論文 参考訳(メタデータ) (2021-06-30T16:49:07Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
オンラインリソーススケジューリングフレームワークは、IoT(Internet of Things)の全ユーザに対して、重み付けされたタスクレイテンシの総和を最小化するために提案されている。
以下を含む深層強化学習(DRL)に基づく解法を提案する。
DRLがポリシーネットワークをトレーニングし、最適なオフロードポリシーを見つけるのを支援するために、保存および優先されたエクスペリエンスリプレイ(2p-ER)を導入する。
論文 参考訳(メタデータ) (2020-01-24T23:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。