論文の概要: Go-Blend behavior and affect
- arxiv url: http://arxiv.org/abs/2109.13388v1
- Date: Fri, 24 Sep 2021 17:04:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:54:14.199962
- Title: Go-Blend behavior and affect
- Title(参考訳): ゴーブレンド行動と影響
- Authors: Matthew Barthet, Antonios Liapis and Georgios N. Yannakakis
- Abstract要約: 本稿では、感情モデリングタスクを強化学習プロセスとして見ることにより、感情コンピューティングのパラダイムシフトを提案する。
本研究では,Go-Exploreエージェントを最適にプレイし,人間の覚醒のデモンストレーションを模倣しようとすることで,アーケードゲームにおける我々のフレームワークをテストする。
- 参考スコア(独自算出の注目度): 2.323282558557423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a paradigm shift for affective computing by viewing the
affect modeling task as a reinforcement learning process. According to our
proposed framework the context (environment) and the actions of an agent define
the common representation that interweaves behavior and affect. To realise this
framework we build on recent advances in reinforcement learning and use a
modified version of the Go-Explore algorithm which has showcased supreme
performance in hard exploration tasks. In this initial study, we test our
framework in an arcade game by training Go-Explore agents to both play
optimally and attempt to mimic human demonstrations of arousal. We vary the
degree of importance between optimal play and arousal imitation and create
agents that can effectively display a palette of affect and behavioral
patterns. Our Go-Explore implementation not only introduces a new paradigm for
affect modeling; it empowers believable AI-based game testing by providing
agents that can blend and express a multitude of behavioral and affective
patterns.
- Abstract(参考訳): 本稿では,感情モデリングタスクを強化学習プロセスとして見ることにより,感情コンピューティングのパラダイムシフトを提案する。
提案フレームワークによれば、エージェントのコンテキスト(環境)とアクションは、振る舞いと影響を織り交ぜる共通の表現を定義します。
このフレームワークを実現するために、我々は強化学習の最近の進歩に基づき、ハード探索タスクで最高のパフォーマンスを示すgo-exploreアルゴリズムの修正版を使用します。
本研究では,Go-Exploreエージェントを最適にプレイし,人間の覚醒のデモンストレーションを模倣しようとすることで,アーケードゲームにおける我々のフレームワークをテストする。
最適な遊びと覚醒的模倣の間に重要度が変化し、感情や行動パターンのパレットを効果的に表示できるエージェントを作成する。
当社のgo-explore実装は,影響モデリングの新しいパラダイムを導入するだけでなく,多数の行動パターンと感情パターンをブレンドし,表現可能なエージェントを提供することで,aiベースのゲームテストを可能にするものです。
関連論文リスト
- External Model Motivated Agents: Reinforcement Learning for Enhanced Environment Sampling [3.536024441537599]
強化学習(RL)エージェントとは異なり、人間は環境の変化において有能なマルチタスクのままである。
環境変化における外部モデルの適応効率を向上させるために,RLエージェントのエージェント影響フレームワークを提案する。
提案手法は,効率と性能の両面を測る指標に対する外部モデル適応の観点から,ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-28T23:31:22Z) - Learning Action-Effect Dynamics for Hypothetical Vision-Language
Reasoning Task [50.72283841720014]
本研究では,行動の効果に関する推論を改善する新しい学習戦略を提案する。
本稿では,提案手法の有効性を実証し,性能,データ効率,一般化能力の観点から,従来のベースラインに対する優位性を論じる。
論文 参考訳(メタデータ) (2022-12-07T05:41:58Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
継続的な学習は、以前の知識を忘れずに、一連のタスクでモデルを漸進的にトレーニングすることを目的としている。
本稿では,視覚的質問応答において,異なる設定がパフォーマンスに与える影響について詳細に検討する。
論文 参考訳(メタデータ) (2022-09-30T19:12:58Z) - Play with Emotion: Affect-Driven Reinforcement Learning [3.611888922173257]
本稿では、強化学習プロセスとして、感情モデリングの課題を観ることによるパラダイムシフトを紹介する。
我々は,Go-Blendエージェントをトレーニングし,覚醒と行動の人間の実演をモデル化することで,レースゲームにおける仮説を検証した。
論文 参考訳(メタデータ) (2022-08-26T12:28:24Z) - Homomorphism Autoencoder -- Learning Group Structured Representations from Observed Transitions [51.71245032890532]
本研究では,世界に作用するエージェントが,それを修飾する動作と整合した感覚情報の内部表現を学習できるようにする手法を提案する。
既存の作業とは対照的に、我々のアプローチはグループの事前の知識を必要とせず、エージェントが実行可能なアクションのセットを制限しない。
論文 参考訳(メタデータ) (2022-07-25T11:22:48Z) - Modelling Behaviour Change using Cognitive Agent Simulations [0.0]
本稿では, シミュレーションエージェントに選択された行動変化理論を適用するために, プログレッシブ・イン・プログレッシブ・リサーチを提案する。
この研究は、不適切な状況下での自己決定的目標達成に必要な複雑なエージェントアーキテクチャに焦点を当てている。
論文 参考訳(メタデータ) (2021-10-16T19:19:08Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
ユーザの行動嗜好モデルのための生成的逆強化学習を提案する。
我々のモデルは,差別的アクター批判ネットワークとWasserstein GANに基づいて,ユーザの行動から報酬を自動的に学習することができる。
論文 参考訳(メタデータ) (2021-05-03T13:14:25Z) - Learning to Represent Action Values as a Hypergraph on the Action
Vertices [17.811355496708728]
行動値推定は強化学習法(RL)の重要な要素である。
多次元のアクション空間の構造を活用することが、アクションの優れた表現を学ぶための鍵となる要素であると推測する。
Atari 2600 ゲームや、離散化物理制御ベンチマークなど、無数の領域に対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2020-10-28T00:19:13Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
本稿では,情報とアーキテクチャの制約を,確率論的モデリング文献のアイデアと組み合わせて行動の事前学習を行う方法について考察する。
このような潜伏変数の定式化が階層的強化学習(HRL)と相互情報と好奇心に基づく目的との関係について論じる。
シミュレーションされた連続制御領域に適用することで,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-10-27T13:17:18Z) - Learning intuitive physics and one-shot imitation using
state-action-prediction self-organizing maps [0.0]
人間は探索と模倣によって学び、世界の因果モデルを構築し、両方を使って新しいタスクを柔軟に解決する。
このような特徴を生み出す単純だが効果的な教師なしモデルを提案する。
エージェントがアクティブな推論スタイルで柔軟に解決する、複数の関連するが異なる1ショットの模倣タスクに対して、その性能を示す。
論文 参考訳(メタデータ) (2020-07-03T12:29:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。