Quantum Computation Using Action Variables
- URL: http://arxiv.org/abs/2109.13639v1
- Date: Fri, 24 Sep 2021 12:04:27 GMT
- Title: Quantum Computation Using Action Variables
- Authors: Yong Zhang and Konglong Wu
- Abstract summary: We argue quantum computation using action variables as fault-tolerant quantum computation, whose fault-tolerance is guaranteed by the quantum KAM theorem.
Besides, we view the Birkhoff norm form as a mathematical framework of the extended harmonic oscillator quantum computation.
- Score: 4.087043981909747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Lloyd and Montangero have made a brief research proposal on
universal quantum computation in integrable systems. The main idea is to encode
qubits into quantum action variables and build up quantum gates by the method
of resonant control. We study this proposal to argue quantum computation using
action variables as fault-tolerant quantum computation, whose fault-tolerance
is guaranteed by the quantum KAM theorem. Besides, we view the Birkhoff norm
form as a mathematical framework of the extended harmonic oscillator quantum
computation.
Related papers
- Generalised Quantum Gates for Qudits and their Application in Quantum Fourier Transform [0.0]
We propose a novel formulation of qudit gates that is universally applicable for any number of levels $d$.
By extending the mathematical framework of quantum gates to arbitrary dimensions, we derive explicit gate operations that form a universal set for quantum computation on qudits of any size.
arXiv Detail & Related papers (2024-10-07T15:23:57Z) - Distributed Quantum Computation via Entanglement Forging and Teleportation [13.135604356093193]
Distributed quantum computation is a practical method for large-scale quantum computation on quantum processors with limited size.
In this paper, we demonstrate the methods to implement a nonlocal quantum circuit on two quantum processors without any quantum correlations.
arXiv Detail & Related papers (2024-09-04T08:10:40Z) - Universal quantum computation using quantum annealing with the
transverse-field Ising Hamiltonian [0.0]
We present a practical method for implementing universal quantum computation using the transverse-field Ising Hamiltonian.
Our proposal is compatible with D-Wave devices, opening up possibilities for realizing large-scale gate-based quantum computers.
arXiv Detail & Related papers (2024-02-29T12:47:29Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum Error Mitigation via Quantum-Noise-Effect Circuit Groups [0.0]
Near-term quantum computers are fragile against quantum noise effects.
Traditional quantum-error-correcting codes are not implemented on such devices.
We propose quantum error mitigation (QEM) scheme for quantum computational errors.
arXiv Detail & Related papers (2022-05-27T11:21:35Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.