3N-GAN: Semi-Supervised Classification of X-Ray Images with a 3-Player
Adversarial Framework
- URL: http://arxiv.org/abs/2109.13862v1
- Date: Wed, 22 Sep 2021 23:18:59 GMT
- Title: 3N-GAN: Semi-Supervised Classification of X-Ray Images with a 3-Player
Adversarial Framework
- Authors: Shafin Haque, Ayaan Haque
- Abstract summary: We propose 3N-GAN, or 3 Network Generative Adversarial Networks, to perform semi-supervised classification of medical images.
Preliminary results show improved classification performance and GAN generations over various algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of deep learning for medical imaging tasks, such as
classification, is heavily reliant on the availability of large-scale datasets.
However, acquiring datasets with large quantities of labeled data is
challenging, as labeling is expensive and time-consuming. Semi-supervised
learning (SSL) is a growing alternative to fully-supervised learning, but
requires unlabeled samples for training. In medical imaging, many datasets lack
unlabeled data entirely, so SSL can't be conventionally utilized. We propose
3N-GAN, or 3 Network Generative Adversarial Networks, to perform
semi-supervised classification of medical images in fully-supervised settings.
We incorporate a classifier into the adversarial relationship such that the
generator trains adversarially against both the classifier and discriminator.
Our preliminary results show improved classification performance and GAN
generations over various algorithms. Our work can seamlessly integrate with
numerous other medical imaging model architectures and SSL methods for greater
performance.
Related papers
- Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Towards Generic Semi-Supervised Framework for Volumetric Medical Image
Segmentation [19.09640071505051]
We develop a generic SSL framework to handle settings such as UDA and SemiDG.
We evaluate our proposed framework on four benchmark datasets for SSL, Class-imbalanced SSL, UDA and SemiDG.
The results showcase notable improvements compared to state-of-the-art methods across all four settings.
arXiv Detail & Related papers (2023-10-17T14:58:18Z) - PCDAL: A Perturbation Consistency-Driven Active Learning Approach for
Medical Image Segmentation and Classification [12.560273908522714]
Supervised learning deeply relies on large-scale annotated data, which is expensive, time-consuming, and impractical to acquire in medical imaging applications.
Active Learning (AL) methods have been widely applied in natural image classification tasks to reduce annotation costs.
We propose an AL-based method that can be simultaneously applied to 2D medical image classification, segmentation, and 3D medical image segmentation tasks.
arXiv Detail & Related papers (2023-06-29T13:11:46Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Semi-supervised classification of radiology images with NoTeacher: A
Teacher that is not Mean [10.880392855729552]
We introduce NoTeacher, a novel consistency-based semi-supervised learning framework.
NoTeacher employs two independent networks, eliminating the need for a teacher network.
We show that NoTeacher achieves over 90-95% of the fully supervised AUROC with less than 5-15% labeling budget.
arXiv Detail & Related papers (2021-08-10T03:08:35Z) - Medical Instrument Segmentation in 3D US by Hybrid Constrained
Semi-Supervised Learning [62.13520959168732]
We propose a semi-supervised learning framework for instrument segmentation in 3D US.
To achieve the SSL learning, a Dual-UNet is proposed to segment the instrument.
Our proposed method achieves Dice score of about 68.6%-69.1% and the inference time of about 1 sec. per volume.
arXiv Detail & Related papers (2021-07-30T07:59:45Z) - Multi-Label Generalized Zero Shot Learning for the Classification of
Disease in Chest Radiographs [0.7734726150561088]
We propose a zero shot learning network that can simultaneously predict multiple seen and unseen diseases in chest X-ray images.
The network is end-to-end trainable and requires no independent pre-training for the offline feature extractor.
Our network outperforms two strong baselines in terms of recall, precision, f1 score, and area under the receiver operating characteristic curve.
arXiv Detail & Related papers (2021-07-14T09:04:20Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z) - Embedding Task Knowledge into 3D Neural Networks via Self-supervised
Learning [21.902313057142905]
Self-supervised learning (SSL) is a potential solution for deficient annotated data.
We propose a novel SSL approach for 3D medical image classification, namely Task-related Contrastive Prediction Coding ( TCPC)
TCPC embeds task knowledge into training 3D neural networks.
arXiv Detail & Related papers (2020-06-10T12:37:39Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.