Semi-supervised Cervical Segmentation on Ultrasound by A Dual Framework for Neural Networks
- URL: http://arxiv.org/abs/2503.17057v1
- Date: Fri, 21 Mar 2025 11:16:44 GMT
- Title: Semi-supervised Cervical Segmentation on Ultrasound by A Dual Framework for Neural Networks
- Authors: Fangyijie Wang, Kathleen M. Curran, Guénolé Silvestre,
- Abstract summary: This study introduces a novel semi-supervised learning (SSL) framework that integrates dual neural networks.<n>A self-supervised contrastive learning strategy is introduced, which employs a pair of deep representations to enhance feature learning capabilities.<n>Our framework demonstrates competitive performance in cervical segmentation tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate segmentation of ultrasound (US) images of the cervical muscles is crucial for precision healthcare. The demand for automatic computer-assisted methods is high. However, the scarcity of labeled data hinders the development of these methods. Advanced semi-supervised learning approaches have displayed promise in overcoming this challenge by utilizing labeled and unlabeled data. This study introduces a novel semi-supervised learning (SSL) framework that integrates dual neural networks. This SSL framework utilizes both networks to generate pseudo-labels and cross-supervise each other at the pixel level. Additionally, a self-supervised contrastive learning strategy is introduced, which employs a pair of deep representations to enhance feature learning capabilities, particularly on unlabeled data. Our framework demonstrates competitive performance in cervical segmentation tasks. Our codes are publicly available on https://github.com/13204942/SSL\_Cervical\_Segmentation.
Related papers
- Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation [13.707121013895929]
We present a novel semi-supervised learning method, Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation.
We use distinct decoders for student and teacher networks while maintain the same encoder.
To learn from unlabeled data, we create pseudo-labels generated by the teacher networks and augment the training data with the pseudo-labels.
arXiv Detail & Related papers (2023-08-31T09:13:34Z) - Weakly-supervised positional contrastive learning: application to
cirrhosis classification [45.63061034568991]
Large medical imaging datasets can be cheaply annotated with low-confidence, weak labels.
Access to high-confidence labels, such as histology-based diagnoses, is rare and costly.
We propose an efficient weakly-supervised positional (WSP) contrastive learning strategy.
arXiv Detail & Related papers (2023-07-10T15:02:13Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - 3N-GAN: Semi-Supervised Classification of X-Ray Images with a 3-Player
Adversarial Framework [0.0]
We propose 3N-GAN, or 3 Network Generative Adversarial Networks, to perform semi-supervised classification of medical images.
Preliminary results show improved classification performance and GAN generations over various algorithms.
arXiv Detail & Related papers (2021-09-22T23:18:59Z) - Multi-Label Generalized Zero Shot Learning for the Classification of
Disease in Chest Radiographs [0.7734726150561088]
We propose a zero shot learning network that can simultaneously predict multiple seen and unseen diseases in chest X-ray images.
The network is end-to-end trainable and requires no independent pre-training for the offline feature extractor.
Our network outperforms two strong baselines in terms of recall, precision, f1 score, and area under the receiver operating characteristic curve.
arXiv Detail & Related papers (2021-07-14T09:04:20Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Semi-supervised Medical Image Segmentation through Dual-task Consistency [18.18484640332254]
We propose a novel dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target.
Our method can largely improve the performance by incorporating the unlabeled data.
Our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods.
arXiv Detail & Related papers (2020-09-09T17:49:21Z) - Semi-supervised deep learning based on label propagation in a 2D
embedded space [117.9296191012968]
Proposed solutions propagate labels from a small set of supervised images to a large set of unsupervised ones to train a deep neural network model.
We present a loop in which a deep neural network (VGG-16) is trained from a set with more correctly labeled samples along iterations.
As the labeled set improves along iterations, it improves the features of the neural network.
arXiv Detail & Related papers (2020-08-02T20:08:54Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z) - Self-supervised Learning on Graphs: Deep Insights and New Direction [66.78374374440467]
Self-supervised learning (SSL) aims to create domain specific pretext tasks on unlabeled data.
There are increasing interests in generalizing deep learning to the graph domain in the form of graph neural networks (GNNs)
arXiv Detail & Related papers (2020-06-17T20:30:04Z) - Semi-supervised Medical Image Classification with Global Latent Mixing [8.330337646455957]
Computer-aided diagnosis via deep learning relies on large-scale annotated data sets.
Semi-supervised learning mitigates this challenge by leveraging unlabeled data.
We present a novel SSL approach that trains the neural network on linear mixing of labeled and unlabeled data.
arXiv Detail & Related papers (2020-05-22T14:49:13Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.