論文の概要: $f$-Cal: Calibrated aleatoric uncertainty estimation from neural
networks for robot perception
- arxiv url: http://arxiv.org/abs/2109.13913v1
- Date: Tue, 28 Sep 2021 17:57:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:49:49.238380
- Title: $f$-Cal: Calibrated aleatoric uncertainty estimation from neural
networks for robot perception
- Title(参考訳): f$-cal:ロボット知覚のためのニューラルネットワークによるアレエータ不確実性推定
- Authors: Dhaivat Bhatt, Kaustubh Mani, Dishank Bansal, Krishna Murthy, Hanju
Lee, Liam Paull
- Abstract要約: 既存のアプローチでは、ネットワークアーキテクチャ、推論手順、損失関数を変更することで、ニューラルネットワークの知覚スタックから不確実性を推定する。
私たちの重要な洞察は、キャリブレーションはミニバッチのような複数の例に制約を課すことでのみ達成できるということです。
ニューラルネットワークの出力分布を、$f$-divergenceを最小にすることで、ターゲット分布に類似させることにより、従来のアプローチに比べてはるかに優れた校正モデルが得られる。
- 参考スコア(独自算出の注目度): 9.425514903472545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While modern deep neural networks are performant perception modules,
performance (accuracy) alone is insufficient, particularly for safety-critical
robotic applications such as self-driving vehicles. Robot autonomy stacks also
require these otherwise blackbox models to produce reliable and calibrated
measures of confidence on their predictions. Existing approaches estimate
uncertainty from these neural network perception stacks by modifying network
architectures, inference procedure, or loss functions. However, in general,
these methods lack calibration, meaning that the predictive uncertainties do
not faithfully represent the true underlying uncertainties (process noise). Our
key insight is that calibration is only achieved by imposing constraints across
multiple examples, such as those in a mini-batch; as opposed to existing
approaches which only impose constraints per-sample, often leading to
overconfident (thus miscalibrated) uncertainty estimates. By enforcing the
distribution of outputs of a neural network to resemble a target distribution
by minimizing an $f$-divergence, we obtain significantly better-calibrated
models compared to prior approaches. Our approach, $f$-Cal, outperforms
existing uncertainty calibration approaches on robot perception tasks such as
object detection and monocular depth estimation over multiple real-world
benchmarks.
- Abstract(参考訳): 現代のディープニューラルネットワークはパフォーマンス認識モジュールであるが、特に自動運転車のような安全クリティカルなロボットアプリケーションでは、パフォーマンス(精度)だけでは不十分である。
ロボットの自律性スタックは、これらのブラックボックスモデルも必要としており、予測に対する信頼性と信頼性の調整を行う。
既存のアプローチでは、ネットワークアーキテクチャ、推論手順、損失関数を変更することで、これらのニューラルネットワーク知覚スタックから不確実性を推定する。
しかし、一般にこれらの手法は校正を欠いているため、予測の不確実性は真の不確実性(プロセスノイズ)を忠実に表さない。
私たちの重要な洞察は、キャリブレーションは、ミニバッチのような複数の例にまたがって制約を課すことによってのみ達成される、ということです。
ニューラルネットワークの出力分布を、$f$-divergenceを最小にすることで、ターゲット分布に類似させることにより、従来のアプローチに比べてはるかに優れた校正モデルが得られる。
提案手法である$f$-calは,複数の実世界のベンチマークにおける物体検出や単眼深度推定などのロボット知覚タスクにおける既存の不確実性校正手法を上回っている。
関連論文リスト
- Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
不確かさの定量化は、信頼性と信頼性のある機械学習における中心的な課題である。
最適正規化推定器のキャリブレーション曲線において, 分類精度とキャリブレーションのトレードオフを示す。
これは経験的ベイズ法とは対照的であり、高次一般化誤差と過度パラメトリゼーションにもかかわらず、我々の設定では十分に校正されていることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:01:08Z) - BayesNetCNN: incorporating uncertainty in neural networks for
image-based classification tasks [0.29005223064604074]
本稿では,標準的なニューラルネットワークをベイズニューラルネットワークに変換する手法を提案する。
本研究では,各前方パスにおいて,元のものと類似した異なるネットワークをサンプリングすることにより,予測のばらつきを推定する。
我々は、アルツハイマー病患者の脳画像の大きなコホートを用いて、我々のモデルを検証した。
論文 参考訳(メタデータ) (2022-09-27T01:07:19Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
本研究では,凍結モデルに対するベイズIDマッピングを学習し,不確実性の推定を可能にするBayesCapを提案する。
BayesCapは、元のデータセットのごく一部でトレーニングできる、メモリ効率のよいメソッドである。
本稿では,多種多様なアーキテクチャを用いた多種多様なタスクに対する本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-07-14T12:50:09Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
自動運転車などの安全クリティカルなシステムには、定量化または少なくとも上限の不確実性が不可欠です。
マハラノビス距離に基づく統計的テストにより、厳しい品質基準である不確実性リアリズムを評価します。
自動車分野に採用し、プレーンエンコーダデコーダモデルと比較して、不確実性リアリズムを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-01-08T11:56:12Z) - Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks [22.34227625637843]
識別型分類器における確率のパラメトリゼーションが不確実性推定に与える影響について検討する。
画像分類タスクのキャリブレーションを改善するために, 1-vs-all の定式化が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-10T01:55:02Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。