論文の概要: Generating Summaries for Scientific Paper Review
- arxiv url: http://arxiv.org/abs/2109.14059v1
- Date: Tue, 28 Sep 2021 21:43:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 02:05:39.753958
- Title: Generating Summaries for Scientific Paper Review
- Title(参考訳): 科学論文レビューのための要約の作成
- Authors: Ana Sabina Uban, Cornelia Caragea
- Abstract要約: 機械学習とNLPにおけるトップの会場への応募の増加は、レビュアーに過剰な負担を課す問題を引き起こしている。
レビュープロセスを支援する自動システムは、問題を改善するための解決策になり得る。
本稿では,学術論文の自動レビュー要約生成について検討する。
- 参考スコア(独自算出の注目度): 29.12631698162247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The review process is essential to ensure the quality of publications.
Recently, the increase of submissions for top venues in machine learning and
NLP has caused a problem of excessive burden on reviewers and has often caused
concerns regarding how this may not only overload reviewers, but also may
affect the quality of the reviews. An automatic system for assisting with the
reviewing process could be a solution for ameliorating the problem. In this
paper, we explore automatic review summary generation for scientific papers. We
posit that neural language models have the potential to be valuable candidates
for this task. In order to test this hypothesis, we release a new dataset of
scientific papers and their reviews, collected from papers published in the
NeurIPS conference from 2013 to 2020. We evaluate state of the art neural
summarization models, present initial results on the feasibility of automatic
review summary generation, and propose directions for the future.
- Abstract(参考訳): レビュープロセスは出版物の品質を確保するために不可欠です。
近年、機械学習とNLPのトップ会場への応募の増加は、レビュアーに過剰な負担がかかる問題を引き起こしており、レビュアーの過負荷だけでなく、レビューの質にも影響を及ぼす可能性があるという懸念もしばしば生じている。
レビュープロセスを支援する自動システムは、問題を改善するための解決策になり得る。
本稿では,学術論文の自動レビュー要約生成について検討する。
我々は、ニューラルネットワークモデルがこのタスクに価値ある候補になる可能性があると仮定する。
この仮説を検証するために,2013年から2020年までのneuripsカンファレンスで発表された論文から,新たな科学論文のデータセットとそのレビューを公開する。
本稿では, 人工神経の要約モデルの現状を評価し, 自動要約生成の実現可能性に関する最初の結果と今後の方向性を提案する。
関連論文リスト
- Analysis of the ICML 2023 Ranking Data: Can Authors' Opinions of Their Own Papers Assist Peer Review in Machine Learning? [52.00419656272129]
我々は2023年の国際機械学習会議(ICML)で実験を行った。
我々はそれぞれ2,592件の応募書を含む1,342件のランク付けを受けた。
著者によるランキングを用いて生のレビュースコアを校正するイソトニックメカニズムに注目した。
論文 参考訳(メタデータ) (2024-08-24T01:51:23Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - What Can Natural Language Processing Do for Peer Review? [173.8912784451817]
現代の科学ではピアレビューが広く使われているが、それは難しく、時間がかかり、エラーを起こしやすい。
ピアレビューに関わるアーティファクトは大部分がテキストベースであるため、自然言語処理はレビューを改善する大きな可能性を秘めている。
筆者らは、原稿提出からカメラ対応リビジョンまでの各工程について詳述し、NLP支援の課題と機会について論じる。
論文 参考訳(メタデータ) (2024-05-10T16:06:43Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Automatic Analysis of Substantiation in Scientific Peer Reviews [24.422667012858298]
SubstanReviewは、ドメインの専門家による注釈付きNLPカンファレンスからの550のレビューで構成されている。
このデータセットに基づいて、ピアレビューにおけるサブスタンレーションのレベルを自動的に解析する引数マイニングシステムを訓練する。
また,近年のNLPカンファレンスにおけるピアレビューの質に関する有意義な洞察を得るために,AsstanReviewデータセットのデータ分析を実施している。
論文 参考訳(メタデータ) (2023-11-20T17:47:37Z) - No more Reviewer #2: Subverting Automatic Paper-Reviewer Assignment
using Adversarial Learning [25.70062566419791]
この自動化は,逆学習を用いて操作可能であることを示す。
提案する攻撃は、与えられた論文に適応し、その課題を誤解させ、独自のレビュアーを選択する。
論文 参考訳(メタデータ) (2023-03-25T11:34:27Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
我々はこれをピアレビューテキストとレビュアースコアに基づく論文ランキング問題とみなした。
ピアレビューに基づいて最終決定を行うための,新しい多面的総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-02T19:41:47Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
我々は、最先端自然言語処理(NLP)モデルを用いて、科学論文の第一パスピアレビューを生成する可能性について論じる。
我々は、機械学習領域で論文のデータセットを収集し、各レビューでカバーされているさまざまなコンテンツに注釈を付け、レビューを生成するために論文を取り込み、ターゲットの要約モデルを訓練する。
総合的な実験結果から、システム生成レビューは、人間によるレビューよりも、論文の多くの側面に触れる傾向にあることが示された。
論文 参考訳(メタデータ) (2021-01-30T07:16:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。