Cross-Camera Human Motion Transfer by Time Series Analysis
- URL: http://arxiv.org/abs/2109.14174v4
- Date: Sat, 30 Dec 2023 06:24:49 GMT
- Title: Cross-Camera Human Motion Transfer by Time Series Analysis
- Authors: Yaping Zhao, Guanghan Li, Edmund Y. Lam
- Abstract summary: We propose an algorithm that identifies motion seasonality and constructs an additive model to extract transferable patterns.
We improve pose estimation in low-resolution videos by leveraging patterns derived from HR counterparts.
- Score: 11.454103393879368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With advances in optical sensor technology, heterogeneous camera systems are
increasingly used for high-resolution (HR) video acquisition and analysis.
However, motion transfer across multiple cameras poses challenges. To address
this, we propose an algorithm based on time series analysis that identifies
motion seasonality and constructs an additive model to extract transferable
patterns. Validated on real-world data, our algorithm demonstrates
effectiveness and interpretability. Notably, it improves pose estimation in
low-resolution videos by leveraging patterns derived from HR counterparts,
enhancing practical utility. Code is available at:
https://github.com/IndigoPurple/TSAMT
Related papers
- DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
This paper proposes a concise, elegant, and robust pipeline to estimate smooth camera trajectories and obtain dense point clouds for casual videos in the wild.
We show that the proposed method achieves state-of-the-art performance in terms of camera pose estimation even in complex dynamic challenge scenes.
arXiv Detail & Related papers (2024-11-20T13:01:16Z) - Redundancy-Aware Camera Selection for Indoor Scene Neural Rendering [54.468355408388675]
We build a similarity matrix that incorporates both the spatial diversity of the cameras and the semantic variation of the images.
We apply a diversity-based sampling algorithm to optimize the camera selection.
We also develop a new dataset, IndoorTraj, which includes long and complex camera movements captured by humans in virtual indoor environments.
arXiv Detail & Related papers (2024-09-11T08:36:49Z) - CRiM-GS: Continuous Rigid Motion-Aware Gaussian Splatting from Motion Blur Images [12.603775893040972]
We propose continuous rigid motion-aware gaussian splatting (CRiM-GS) to reconstruct accurate 3D scene from blurry images with real-time rendering speed.
We leverage rigid body transformations to model the camera motion with proper regularization, preserving the shape and size of the object.
Furthermore, we introduce a continuous deformable 3D transformation in the textitSE(3) field to adapt the rigid body transformation to real-world problems.
arXiv Detail & Related papers (2024-07-04T13:37:04Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Homography Estimation in Complex Topological Scenes [6.023710971800605]
Surveillance videos and images are used for a broad set of applications, ranging from traffic analysis to crime detection.
Extrinsic camera calibration data is important for most analysis applications.
We present an automated camera-calibration process leveraging a dictionary-based approach that does not require prior knowledge on any camera settings.
arXiv Detail & Related papers (2023-08-02T11:31:43Z) - GPU-accelerated SIFT-aided source identification of stabilized videos [63.084540168532065]
We exploit the parallelization capabilities of Graphics Processing Units (GPUs) in the framework of stabilised frames inversion.
We propose to exploit SIFT features.
to estimate the camera momentum and %to identify less stabilized temporal segments.
Experiments confirm the effectiveness of the proposed approach in reducing the required computational time and improving the source identification accuracy.
arXiv Detail & Related papers (2022-07-29T07:01:31Z) - ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving
Cameras in the Wild [57.37891682117178]
We present a robust dense indirect structure-from-motion method for videos that is based on dense correspondence from pairwise optical flow.
A novel neural network architecture is proposed for processing irregular point trajectory data.
Experiments on MPI Sintel dataset show that our system produces significantly more accurate camera trajectories.
arXiv Detail & Related papers (2022-07-19T09:19:45Z) - Motion-aware Dynamic Graph Neural Network for Video Compressive Sensing [14.67994875448175]
Video snapshot imaging (SCI) utilizes a 2D detector to capture sequential video frames and compress them into a single measurement.
Most existing reconstruction methods are incapable of efficiently capturing long-range spatial and temporal dependencies.
We propose a flexible and robust approach based on the graph neural network (GNN) to efficiently model non-local interactions between pixels in space and time regardless of the distance.
arXiv Detail & Related papers (2022-03-01T12:13:46Z) - Self-Supervised Camera Self-Calibration from Video [34.35533943247917]
We propose a learning algorithm to regress per-sequence calibration parameters using an efficient family of general camera models.
Our procedure achieves self-calibration results with sub-pixel reprojection error, outperforming other learning-based methods.
arXiv Detail & Related papers (2021-12-06T19:42:05Z) - TransCamP: Graph Transformer for 6-DoF Camera Pose Estimation [77.09542018140823]
We propose a neural network approach with a graph transformer backbone, namely TransCamP, to address the camera relocalization problem.
TransCamP effectively fuses the image features, camera pose information and inter-frame relative camera motions into encoded graph attributes.
arXiv Detail & Related papers (2021-05-28T19:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.