論文の概要: Implicit Generative Copulas
- arxiv url: http://arxiv.org/abs/2109.14567v1
- Date: Wed, 29 Sep 2021 17:05:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 14:56:13.204617
- Title: Implicit Generative Copulas
- Title(参考訳): 暗黙の生成コプラ
- Authors: Tim Janke, Mohamed Ghanmi, Florian Steinke
- Abstract要約: 我々は、暗黙的な生成ニューラルネットワークに基づく柔軟な、しかし概念的には単純な代替案を提案する。
ファイナンス、物理、画像生成の合成および実データに関する実験は、このアプローチの性能を実証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Copulas are a powerful tool for modeling multivariate distributions as they
allow to separately estimate the univariate marginal distributions and the
joint dependency structure. However, known parametric copulas offer limited
flexibility especially in high dimensions, while commonly used non-parametric
methods suffer from the curse of dimensionality. A popular remedy is to
construct a tree-based hierarchy of conditional bivariate copulas. In this
paper, we propose a flexible, yet conceptually simple alternative based on
implicit generative neural networks. The key challenge is to ensure marginal
uniformity of the estimated copula distribution. We achieve this by learning a
multivariate latent distribution with unspecified marginals but the desired
dependency structure. By applying the probability integral transform, we can
then obtain samples from the high-dimensional copula distribution without
relying on parametric assumptions or the need to find a suitable tree
structure. Experiments on synthetic and real data from finance, physics, and
image generation demonstrate the performance of this approach.
- Abstract(参考訳): copulasは多変量分布をモデル化するための強力なツールであり、不定辺分布と結合依存性構造を別々に推定することができる。
しかしながら、既知のパラメトリックコプラは特に高次元において限定的な柔軟性を提供するが、一般的に用いられる非パラメトリック法は次元の呪いに苦しむ。
一般的な治療は条件付き二変量コプラのツリーベースの階層を構築することである。
本稿では,暗黙的生成ニューラルネットワークに基づく柔軟な,概念的には単純な代替案を提案する。
主要な課題は、推定されたコプラ分布の限界均一性を保証することである。
非特定辺縁を持つ多変量潜在分布を学習し,所望の依存関係構造を学習することでこれを実現する。
確率積分変換を適用することで、パラメトリックな仮定や適切な木構造を見つける必要なしに、高次元のコプラ分布からサンプルを得ることができる。
ファイナンス、物理、画像生成による合成および実データ実験は、このアプローチの性能を示している。
関連論文リスト
- Variational Bayesian Phylogenetic Inference with Semi-implicit Branch Length Distributions [6.553961278427792]
本稿では,グラフニューラルネットワークを用いた半単純階層分布に基づく分岐長変動後続の柔軟な系を提案する。
この構造は単純置換同変分布を出力するので、ユークリッドでない枝長空間を異なる木位相で容易に扱えることを示す。
論文 参考訳(メタデータ) (2024-08-09T13:29:08Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Variational autoencoder with weighted samples for high-dimensional
non-parametric adaptive importance sampling [0.0]
既存のフレームワークを、新しい目的関数を導入することで、重み付けされたサンプルの場合に拡張する。
モデルに柔軟性を加え、マルチモーダル分布を学習できるようにするため、学習可能な事前分布を考える。
提案手法は,既存の適応的重要度サンプリングアルゴリズムを用いて,目標分布から点を抽出し,高次元で稀な事象確率を推定する。
論文 参考訳(メタデータ) (2023-10-13T15:40:55Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction
for Uncertainty Quantification [4.728311759896569]
本稿では,機械学習における不確実性を定量化するために,分布予測の新しい,簡潔かつ効果的な手法を提案する。
これは回帰タスクにおいて$mathbbP(mathbfy|mathbfX=x)$の適応的に柔軟な分布予測を組み込む。
UCIデータセットからの大規模な回帰タスクでは、EMQが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2022-11-26T11:45:32Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Deep Archimedean Copulas [98.96141706464425]
ACNetは、構造的特性を強制する、新しい差別化可能なニューラルネットワークアーキテクチャである。
我々は、ACNetが共通のアルキメデスコピュラスを近似し、データに適合する可能性のある新しいコプラを生成することができることを示した。
論文 参考訳(メタデータ) (2020-12-05T22:58:37Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Flexible mean field variational inference using mixtures of
non-overlapping exponential families [6.599344783327053]
標準平均場変動推論を用いることで、疎性誘導前のモデルに対して妥当な結果が得られないことを示す。
拡散指数族と 0 の点質量の任意の混合が指数族を形成することを示す。
論文 参考訳(メタデータ) (2020-10-14T01:46:56Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
変分オートエンコーダ(VAE)とその変分は、いくつかの先行分布を満たすために低次元の潜在表現を学習することによって古典的な生成モデルである。
我々は、先行変数に適合させるのではなく、先行変数が埋め込み分布と一致するように提案する。
論文 参考訳(メタデータ) (2020-09-23T09:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。