Experimental cheat-sensitive quantum weak coin flipping
- URL: http://arxiv.org/abs/2211.03472v1
- Date: Mon, 7 Nov 2022 11:34:48 GMT
- Title: Experimental cheat-sensitive quantum weak coin flipping
- Authors: Simon Neves, Verena Yacoub, Ulysse Chabaud, Mathieu Bozzio, Iordanis
Kerenidis, Eleni Diamanti
- Abstract summary: Weak coin flipping (WCF) is a primitive that allows two mistrustful parties to agree on a random bit while they favor opposite outcomes.
We demonstrate how quantum resources can provide cheat sensitivity, whereby each party can detect a cheating opponent, and an honest party is never sanctioned.
- Score: 2.642406403099596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As in modern communication networks, the security of quantum networks will
rely on complex cryptographic tasks that are based on a handful of fundamental
primitives. Weak coin flipping (WCF) is a significant such primitive which
allows two mistrustful parties to agree on a random bit while they favor
opposite outcomes. Remarkably, perfect information-theoretic security can be
achieved in principle for quantum WCF. Here, we overcome conceptual and
practical issues that have prevented the experimental demonstration of this
primitive to date, and demonstrate how quantum resources can provide cheat
sensitivity, whereby each party can detect a cheating opponent, and an honest
party is never sanctioned. Such a property is not known to be classically
achievable with information-theoretic security. Our experiment implements a
refined, loss-tolerant version of a recently proposed theoretical protocol and
exploits heralded single photons generated by spontaneous parametric down
conversion, a carefully optimized linear optical interferometer including beam
splitters with variable reflectivities and a fast optical switch for the
verification step. High values of our protocol benchmarks are maintained for
attenuation corresponding to several kilometers of telecom optical fiber.
Related papers
- Quantum Advantage: A Single Qubit's Experimental Edge in Classical Data Storage [5.669806907215807]
We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage.
Our work paves the way for immediate applications in near-term quantum technologies.
arXiv Detail & Related papers (2024-03-05T05:09:32Z) - Pilot-reference-free continuous-variable quantum key distribution with
efficient decoy-state analysis [4.738999541025475]
Continuous-variable quantum key distribution (CV QKD) using optical coherent detectors is practically favorable.
Security analysis and parameter estimation of CV QKD are complicated due to the infinite-dimensional latent Hilbert space.
We present a time-bin-encoding CV protocol with a simple phase-error-based security analysis valid under general coherent attacks.
arXiv Detail & Related papers (2023-09-07T15:40:05Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Single-qubit loss-tolerant quantum position verification protocol secure
against entangled attackers [0.0]
We study the exact loss-tolerance of the most popular protocol for QPV, which is based on BB84 states.
We show how these results transfer to the variant protocol which combines $n$ bits of classical information with a single qubit.
arXiv Detail & Related papers (2022-12-07T14:39:56Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Experimental quantum key distribution certified by Bell's theorem [0.0]
cryptographic key exchange protocols traditionally rely on computational conjectures to provide security against eavesdropping attacks.
quantum key distribution protocols provide information-theoretic security against such attacks.
However, quantum protocols are subject to a new class of attacks exploiting implementation defects in the physical devices involved.
We present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities.
arXiv Detail & Related papers (2021-09-29T17:52:48Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Experimental study of continuous variable quantum key distribution [0.22099217573031674]
main technological factors limiting the communication rates of quantum cryptography systems by single photon are mainly related to the choice of the encoding method.
We propose a new reconciliation method based on Turbo codes.
Our method leads to a significant improvement of the protocol security and a large decrease of the QBER.
arXiv Detail & Related papers (2020-02-16T21:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.