論文の概要: Time-Distributed Feature Learning in Network Traffic Classification for
Internet of Things
- arxiv url: http://arxiv.org/abs/2109.14696v1
- Date: Wed, 29 Sep 2021 20:01:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 14:40:01.218109
- Title: Time-Distributed Feature Learning in Network Traffic Classification for
Internet of Things
- Title(参考訳): 物のインターネットのためのネットワークトラフィック分類における時間分散特徴学習
- Authors: Yoga Suhas Kuruba Manjunath, Sihao Zhao, Xiao-Ping Zhang
- Abstract要約: 本稿では,トラフィックデータを一連の画像として扱う新しいネットワークデータ表現を提案する。
ネットワークデータは、時間分散(TD)機能学習を利用するビデオストリームとして実現される。
実験結果から,ネットワーク分類性能を学習するTD機能は,性能を10%向上させることがわかった。
- 参考スコア(独自算出の注目度): 3.1744605242927797
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The plethora of Internet of Things (IoT) devices leads to explosive network
traffic. The network traffic classification (NTC) is an essential tool to
explore behaviours of network flows, and NTC is required for Internet service
providers (ISPs) to manage the performance of the IoT network. We propose a
novel network data representation, treating the traffic data as a series of
images. Thus, the network data is realized as a video stream to employ
time-distributed (TD) feature learning. The intra-temporal information within
the network statistical data is learned using convolutional neural networks
(CNN) and long short-term memory (LSTM), and the inter pseudo-temporal feature
among the flows is learned by TD multi-layer perceptron (MLP). We conduct
experiments using a large data-set with more number of classes. The
experimental result shows that the TD feature learning elevates the network
classification performance by 10%.
- Abstract(参考訳): モノのインターネット(IoT)デバイスは爆発的なネットワークトラフィックをもたらす。
ネットワークトラフィック分類(NTC)は、ネットワークフローの動作を調べる上で不可欠なツールであり、IoTネットワークのパフォーマンスを管理するためには、インターネットサービスプロバイダ(ISP)にNTCが必要である。
本稿では,トラフィックデータを一連の画像として扱う新しいネットワークデータ表現を提案する。
これにより、ネットワークデータをビデオストリームとして実現し、時間分散(TD)特徴学習を採用する。
畳み込みニューラルネットワーク(cnn)とlong short-term memory(lstm)を用いてネットワーク統計データ内の時間的情報を学び、td multi-layer perceptron(mlp)によりフロー間の擬似時間的特徴を学習する。
多数のクラスを持つ大規模データセットを用いて実験を行う。
実験の結果,TD特徴学習はネットワーク分類性能を10%向上させることがわかった。
関連論文リスト
- Deep Learning Approaches for Network Traffic Classification in the
Internet of Things (IoT): A Survey [0.0]
IoT(Internet of Things)は前例のない成長を遂げ、相互接続されたデバイスからの多様なネットワークトラフィックが大量に流入している。
このネットワークトラフィックを効果的に分類することは、リソース割り当ての最適化、セキュリティ対策の強化、IoTシステムにおける効率的なネットワーク管理の確保に不可欠である。
ディープラーニングは、生データから複雑なパターンや表現を自動的に学習する能力のために、ネットワークトラフィック分類の強力なテクニックとして登場した。
論文 参考訳(メタデータ) (2024-02-01T14:33:24Z) - Digital Twin-Native AI-Driven Service Architecture for Industrial
Networks [2.2924151077053407]
我々は、IoTネットワークの概念をサポートするDTネイティブなAI駆動サービスアーキテクチャを提案する。
提案するDTネイティブアーキテクチャでは,TCPベースのデータフローパイプラインと強化学習(RL)ベースの学習モデルを実装している。
論文 参考訳(メタデータ) (2023-11-24T14:56:13Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
スパイキングニューラルネットワーク(SNN)は、前者よりも生物学的に可塑性でエネルギー効率が高いことが示されている。
本稿では,局所タンデム学習(Local Tandem Learning, LTL)と呼ばれる一般化学習規則を提案する。
CIFAR-10データセット上の5つのトレーニングエポック内に高速なネットワーク収束を示すとともに,計算複雑性が低い。
論文 参考訳(メタデータ) (2022-10-10T10:05:00Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
我々はネットワーク埋め込みのための微分可能な量子化法であるd-SNEQを開発した。
d-SNEQは、学習された量子化符号にリッチな高次情報を与えるためにランク損失を組み込む。
トレーニング済みの埋め込みのサイズを大幅に圧縮できるため、ストレージのフットプリントが減少し、検索速度が向上する。
論文 参考訳(メタデータ) (2021-08-20T11:53:05Z) - A Study On the Effects of Pre-processing On Spatio-temporal Action
Recognition Using Spiking Neural Networks Trained with STDP [0.0]
ビデオ分類タスクにおいて,教師なし学習手法で訓練したSNNの行動を研究することが重要である。
本稿では,時間情報を静的な形式に変換し,遅延符号化を用いて視覚情報をスパイクに変換する手法を提案する。
スパイクニューラルネットワークを用いた行動認識における行動の形状と速度の類似性の効果を示す。
論文 参考訳(メタデータ) (2021-05-31T07:07:48Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Short-term Traffic Prediction with Deep Neural Networks: A Survey [2.9849405664643585]
現代の交通システムでは、毎日大量の交通データが生成される。
これにより、短期交通予測(STTP)が急速に進歩した。
複雑な関係を持つトラフィックネットワークでは、最も重要な特徴やパターンを自動的に抽出できるため、ディープニューラルネットワーク(DNN)がよく機能することが多い。
論文 参考訳(メタデータ) (2020-08-28T15:06:06Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Tensor train decompositions on recurrent networks [60.334946204107446]
マトリックス製品状態(MPS)テンソルトレインは、ストレージの削減と推論時の計算時間の観点から、MPOよりも魅力的な特徴を持つ。
理論解析により,MPSテンソル列車はLSTMネットワーク圧縮の最前線に置かれるべきであることを示す。
論文 参考訳(メタデータ) (2020-06-09T18:25:39Z) - Instance Explainable Temporal Network For Multivariate Timeseries [0.0]
本稿では,推論のインスタンスごとの分類決定において重要なチャネルを識別する新しいネットワーク(IETNet)を提案する。
IETNetは、時間的特徴抽出、変数選択、共同変数の相互作用を単一の学習フレームワークに組み合わせたエンドツーエンドネットワークである。
論文 参考訳(メタデータ) (2020-05-26T20:55:24Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。