論文の概要: MiNT: Multi-Network Training for Transfer Learning on Temporal Graphs
- arxiv url: http://arxiv.org/abs/2406.10426v3
- Date: Sat, 15 Feb 2025 04:10:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:04:01.887239
- Title: MiNT: Multi-Network Training for Transfer Learning on Temporal Graphs
- Title(参考訳): MiNT:テンポラルグラフを用いたトランスファーラーニングのためのマルチネットワークトレーニング
- Authors: Kiarash Shamsi, Tran Gia Bao Ngo, Razieh Shirzadkhani, Shenyang Huang, Farimah Poursafaei, Poupak Azad, Reihaneh Rabbany, Baris Coskunuzer, Guillaume Rabusseau, Cuneyt Gurcan Akcora,
- Abstract要約: 時間グラフ学習(TGL)は、動的ネットワークのパターンを発見し、将来の相互作用を予測するための堅牢なフレームワークとなっている。
複数の時間的ネットワークから学習する新しい事前学習手法である時間的マルチネットワークトレーニングMiNTを導入する。
MiNTはゼロショット推論で最先端の結果を達成し、各ネットワークで個別に訓練されたモデルを上回る。
- 参考スコア(独自算出の注目度): 16.27236883013554
- License:
- Abstract: Temporal Graph Learning (TGL) has become a robust framework for discovering patterns in dynamic networks and predicting future interactions. While existing research has largely concentrated on learning from individual networks, this study explores the potential of learning from multiple temporal networks and its ability to transfer to unobserved networks. To achieve this, we introduce Temporal Multi-network Training MiNT, a novel pre-training approach that learns from multiple temporal networks. With a novel collection of 84 temporal transaction networks, we pre-train TGL models on up to 64 networks and assess their transferability to 20 unseen networks. Remarkably, MiNT achieves state-of-the-art results in zero-shot inference, surpassing models individually trained on each network. Our findings further demonstrate that increasing the number of pre-training networks significantly improves transfer performance. This work lays the groundwork for developing Temporal Graph Foundation Models, highlighting the significant potential of multi-network pre-training in TGL.
- Abstract(参考訳): 時間グラフ学習(TGL)は、動的ネットワークのパターンを発見し、将来の相互作用を予測するための堅牢なフレームワークとなっている。
既存の研究は個々のネットワークから学習することに集中しているが、この研究は複数の時間的ネットワークからの学習の可能性と、観測されていないネットワークへ移行する能力について検討している。
これを実現するために,複数の時間ネットワークから学習する新しい事前学習手法であるTemporal Multi-network Training MiNTを導入する。
84の時間的トランザクションネットワークの新たなコレクションにより、最大64のネットワーク上でTGLモデルを事前訓練し、20の未確認ネットワークへの転送性を評価する。
注目すべきは、MiNTはゼロショット推論で最先端の結果を達成し、各ネットワークで個別に訓練されたモデルを上回ることである。
さらに,事前学習ネットワークの増加は転送性能を著しく向上させることを示した。
この研究は、TGLにおけるマルチネットワーク事前トレーニングの重要な可能性を強調した、テンポラルグラフ基礎モデルの開発の基礎となる。
関連論文リスト
- FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
本稿では,グラフ生成モジュールとGNN予測モジュールを含む分離学習手法を提案する。
まず、Graphical Lasso(またはGraphLASSO)を使用して、データから空間パターンを直接利用してグラフ構造を構築します。
次に、これらのグラフ構造と入力データをGCRN(Graph Convolutional Recurrent Network)に適合させて予測モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-29T16:48:00Z) - Scaling Up Dynamic Graph Representation Learning via Spiking Neural
Networks [23.01100055999135]
時間グラフの時間的および構造的パターンを効率的に捉えるために,スケーラブルなフレームワークであるSpikeNetを提案する。
RNNの代替として、SNNは明らかにグラフ力学をニューロンのスパイクトレインとしてモデル化している。
SpikeNetは、パラメータや計算オーバーヘッドが大幅に少ない大きな時間グラフに一般化する。
論文 参考訳(メタデータ) (2022-08-15T09:22:15Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
交通予測のための新しいネットワークである空間時間適応グラフ畳み込み(STAAN)を提案する。
まず,GCN処理中に事前に定義された行列を使わずに適応的依存行列を採用し,ノード間の依存性を推定する。
第2に,グローバルな依存のために設計されたグラフアテンションネットワークに基づくPWアテンションと,空間ブロックとしてのGCNを統合した。
論文 参考訳(メタデータ) (2022-06-07T09:08:35Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
本研究では,ディープ・インバーチブル・ニューラルネットワークを用いた条件生成について述べる。
私たちの目標は,前処理と後処理の予測と生成を同時に行うことにあるので,エンドツーエンドのトレーニングアプローチを採用しています。
論文 参考訳(メタデータ) (2022-06-02T17:28:33Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。