An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics
- URL: http://arxiv.org/abs/2109.14772v1
- Date: Thu, 30 Sep 2021 00:25:35 GMT
- Title: An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics
- Authors: Matthew Olszta, Derek Hopkins, Kevin R. Fiedler, Marjolein Oostrom,
Sarah Akers, Steven R. Spurgeon
- Abstract summary: We discuss the design of a closed-loop instrument control platform guided by emerging sparse data analytics.
We demonstrate how a centralized controller, informed by machine learning combining limited $a$ $priori$ knowledge and task-based discrimination, can drive on-the-fly experimental decision-making.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) promises to reshape scientific inquiry and
enable breakthrough discoveries in areas such as energy storage, quantum
computing, and biomedicine. Scanning transmission electron microscopy (STEM), a
cornerstone of the study of chemical and materials systems, stands to benefit
greatly from AI-driven automation. However, present barriers to low-level
instrument control, as well as generalizable and interpretable feature
detection, make truly automated microscopy impractical. Here, we discuss the
design of a closed-loop instrument control platform guided by emerging sparse
data analytics. We demonstrate how a centralized controller, informed by
machine learning combining limited $a$ $priori$ knowledge and task-based
discrimination, can drive on-the-fly experimental decision-making. This
platform unlocks practical, automated analysis of a variety of material
features, enabling new high-throughput and statistical studies.
Related papers
- Learning and Controlling Silicon Dopant Transitions in Graphene using
Scanning Transmission Electron Microscopy [58.51812955462815]
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms.
The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities.
These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations.
arXiv Detail & Related papers (2023-11-21T21:51:00Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Machine Learning for Uncovering Biological Insights in Spatial
Transcriptomics Data [0.0]
Development and homeostasis in multicellular systems require exquisite control over spatial molecular pattern formation and maintenance.
Advances in spatial transcriptomics (ST) have led to rapid development of innovative machine learning (ML) tools.
We summarize major ST analysis goals that ML can help address and current analysis trends.
arXiv Detail & Related papers (2023-03-29T14:22:08Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Realizing Molecular Machine Learning through Communications for
Biological AI: Future Directions and Challenges [4.059849656394191]
We investigate a scale and medium that is far smaller than conventional devices as we move towards Molecular Machine Learning (MML)
Fundamental to the operation of MML is the transport, processing, and interpretation of information propagated by molecules through chemical reactions.
We look at potential future directions as well as challenges that this area could solve.
arXiv Detail & Related papers (2022-12-22T17:53:25Z) - Ultrafast Focus Detection for Automated Microscopy [0.0]
We present a fast out-of-focus detection algorithm for electron microscopy images collected serially.
Our technique, Multi-scale Histologic Feature Detection, adapts classical computer vision techniques and is based on detecting various fine-grained histologic features.
Tests are performed that demonstrate near-real-time detection of out-of-focus conditions.
arXiv Detail & Related papers (2021-08-26T22:24:41Z) - Automated and Autonomous Experiment in Electron and Scanning Probe
Microscopy [0.0]
We aim to analyze the major pathways towards automated experiment (AE) in imaging methods with sequential image formation mechanisms.
We argue that automated experiments should necessarily be discussed in a broader context of the general domain knowledge that both informs the experiment and is increased as the result of the experiment.
arXiv Detail & Related papers (2021-03-22T20:24:41Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Autonomous discovery in the chemical sciences part II: Outlook [2.566673015346446]
This two-part review examines how automation has contributed to different aspects of discovery in the chemical sciences.
It is increasingly important to articulate what the role of automation and computation has been in the scientific process.
arXiv Detail & Related papers (2020-03-30T19:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.