Game and Simulation Design for Studying Pedestrian-Automated Vehicle
Interactions
- URL: http://arxiv.org/abs/2109.15205v1
- Date: Thu, 30 Sep 2021 15:26:18 GMT
- Title: Game and Simulation Design for Studying Pedestrian-Automated Vehicle
Interactions
- Authors: Georgios Pappas, Joshua E. Siegel, Jacob Rutkowski, Andrea Schaaf
- Abstract summary: We first present contemporary tools in the field and then propose the design and development of a new application that facilitates pedestrian point of view research.
We conduct a three-step user experience experiment where participants answer questions before and after using the application in various scenarios.
- Score: 1.3764085113103217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The present cross-disciplinary research explores pedestrian-autonomous
vehicle interactions in a safe, virtual environment. We first present
contemporary tools in the field and then propose the design and development of
a new application that facilitates pedestrian point of view research. We
conduct a three-step user experience experiment where participants answer
questions before and after using the application in various scenarios.
Behavioral results in virtuality, especially when there were consequences, tend
to simulate real life sufficiently well to make design choices, and we received
valuable insights into human/vehicle interaction. Our tool seemed to start
raising participant awareness of autonomous vehicles and their capabilities and
limitations, which is an important step in overcoming public distrust of AVs.
Further, studying how users respect or take advantage of AVs may help inform
future operating mode indicator design as well as algorithm biases that might
support socially-optimal AV operation.
Related papers
- Behavioural gap assessment of human-vehicle interaction in real and virtual reality-based scenarios in autonomous driving [7.588679613436823]
We present a first and innovative approach to evaluating what we term the behavioural gap, a concept that captures the disparity in a participant's conduct when engaging in a VR experiment compared to an equivalent real-world situation.
In the experiment, the pedestrian attempts to cross the road in the presence of different driving styles and an external Human-Machine Interface (eHMI)
Results show that participants are more cautious and curious in VR, affecting their speed and decisions, and that VR interfaces significantly influence their actions.
arXiv Detail & Related papers (2024-07-04T17:20:17Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Incorporating Explanations into Human-Machine Interfaces for Trust and Situation Awareness in Autonomous Vehicles [4.1636282808157254]
We study the role of explainable AI and human-machine interface jointly in building trust in vehicle autonomy.
We present a situation awareness framework for calibrating users' trust in self-driving behavior.
arXiv Detail & Related papers (2024-04-10T23:02:13Z) - Analyze Drivers' Intervention Behavior During Autonomous Driving -- A
VR-incorporated Approach [2.7532019227694344]
This work sheds light on understanding human drivers' intervention behavior involved in the operation of autonomous vehicles.
Experiment environments were implemented where the virtual reality (VR) and traffic micro-simulation are integrated.
Performance indicators such as the probability of intervention, accident rates are defined and used to quantify and compare the risk levels.
arXiv Detail & Related papers (2023-12-04T06:36:57Z) - Social Interaction-Aware Dynamical Models and Decision Making for
Autonomous Vehicles [20.123965317836106]
Interaction-aware Autonomous Driving (IAAD) is a rapidly growing field of research.
It focuses on the development of autonomous vehicles that are capable of interacting safely and efficiently with human road users.
This is a challenging task, as it requires the autonomous vehicle to be able to understand and predict the behaviour of human road users.
arXiv Detail & Related papers (2023-10-29T03:43:50Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
Hand pointing and eye gaze have been extensively investigated in automotive applications for object selection and referencing.
Existing outside-the-vehicle referencing methods focus on a static situation, whereas the situation in a moving vehicle is highly dynamic and subject to safety-critical constraints.
We investigate the specific characteristics of each modality and the interaction between them when used in the task of referencing outside objects.
arXiv Detail & Related papers (2020-09-23T14:56:19Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - Building Trust in Autonomous Vehicles: Role of Virtual Reality Driving
Simulators in HMI Design [8.39368916644651]
We propose a methodology to validate the user experience in AVs based on continuous, objective information gathered from physiological signals.
We applied this methodology to the design of a head-up display interface delivering visual cues about the vehicle's sensory and planning systems.
arXiv Detail & Related papers (2020-07-27T08:42:07Z) - I-ViSE: Interactive Video Surveillance as an Edge Service using
Unsupervised Feature Queries [70.69741666849046]
This paper proposes an Interactive Video Surveillance as an Edge service (I-ViSE) based on unsupervised feature queries.
An I-ViSE prototype is built following the edge-fog computing paradigm and the experimental results verified the I-ViSE scheme meets the design goal of scene recognition in less than two seconds.
arXiv Detail & Related papers (2020-03-09T14:26:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.