論文の概要: Under the Microscope: Interpreting Readability Assessment Models for
Filipino
- arxiv url: http://arxiv.org/abs/2110.00157v1
- Date: Fri, 1 Oct 2021 01:27:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 02:34:57.828526
- Title: Under the Microscope: Interpreting Readability Assessment Models for
Filipino
- Title(参考訳): フィリピンにおける可読性評価モデルの解釈
- Authors: Joseph Marvin Imperial, Ethel Ong
- Abstract要約: フィリピンにおける機械学習に基づく可読性評価モデルを,グローバルモデルとローカルモデルによる解釈によって識別する。
その結果,大域的解釈から上位特徴を学習したモデルを用いることで,スピアマン相関による特徴を用いたモデルよりも高い性能が得られることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Readability assessment is the process of identifying the level of ease or
difficulty of a certain piece of text for its intended audience. Approaches
have evolved from the use of arithmetic formulas to more complex
pattern-recognizing models trained using machine learning algorithms. While
using these approaches provide competitive results, limited work is done on
analyzing how linguistic variables affect model inference quantitatively. In
this work, we dissect machine learning-based readability assessment models in
Filipino by performing global and local model interpretation to understand the
contributions of varying linguistic features and discuss its implications in
the context of the Filipino language. Results show that using a model trained
with top features from global interpretation obtained higher performance than
the ones using features selected by Spearman correlation. Likewise, we also
empirically observed local feature weight boundaries for discriminating reading
difficulty at an extremely fine-grained level and their corresponding effects
if values are perturbed.
- Abstract(参考訳): 可読性評価(英: Readability Assessment)とは、あるテキストの読みやすさや難易度を特定する過程である。
機械学習アルゴリズムを用いて訓練されたより複雑なパターン認識モデルへの算術式の使用から進化してきた。
これらのアプローチは競争的な結果をもたらすが、言語変数がモデル推論に定量的にどのように影響するかを分析することは限られている。
本研究では,フィリピンにおける機械学習に基づく可読性評価モデルについて,様々な言語的特徴の寄与を理解するためにグローバルおよびローカルモデル解釈を行い,その意味をフィリピン語の文脈で論じる。
その結果,大域的解釈から上位特徴を学習したモデルを用いて,スピアマン相関を用いたモデルよりも高い性能を示した。
また, 局所的特徴量境界を用いて, 極めて微細なレベルで読み難さを識別し, 値が乱れれば対応する効果を実証した。
関連論文リスト
- Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
言語モデル(LM)の言語能力を評価するための新しいベンチマークであるHolmesを紹介する。
我々は、計算に基づく探索を用いて、異なる言語現象に関するLMの内部表現を調べる。
その結果,近年,他の認知能力からLMの言語能力を引き離す声が上がっている。
論文 参考訳(メタデータ) (2024-04-29T17:58:36Z) - Exploring Tokenization Strategies and Vocabulary Sizes for Enhanced Arabic Language Models [0.0]
本稿では,アラビア語モデルの性能に及ぼすトークン化戦略と語彙サイズの影響について検討する。
本研究は, 語彙サイズがモデルサイズを一定に保ちながら, モデル性能に及ぼす影響を限定的に明らかにした。
論文のレコメンデーションには、方言の課題に対処するためのトークン化戦略の洗練、多様な言語コンテキストにわたるモデルの堅牢性の向上、リッチな方言ベースのアラビア語を含むデータセットの拡大が含まれる。
論文 参考訳(メタデータ) (2024-03-17T07:44:44Z) - Can Large Language Models Understand Context? [17.196362853457412]
本稿では,生成モデルの評価に適合する既存のデータセットを適応させることにより,文脈理解ベンチマークを提案する。
実験結果から, 事前学習された高密度モデルでは, 最先端の微調整モデルと比較して, よりニュアンスな文脈特徴の理解に苦慮していることが明らかとなった。
LLM圧縮は研究と実世界のアプリケーションの両方において重要度が高くなっているため、文脈学習環境下での量子化モデルの文脈理解を評価する。
論文 参考訳(メタデータ) (2024-02-01T18:55:29Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Scaling Language Models: Methods, Analysis & Insights from Training
Gopher [83.98181046650664]
本稿では,トランスフォーマーに基づく言語モデルの性能を,幅広いモデルスケールで解析する。
スケールからのゲインは、理解、事実確認、有害言語の同定などにおいて最大である。
我々は、AIの安全性と下流の害の軽減に対する言語モデルの適用について論じる。
論文 参考訳(メタデータ) (2021-12-08T19:41:47Z) - Automated Speech Scoring System Under The Lens: Evaluating and
interpreting the linguistic cues for language proficiency [26.70127591966917]
従来の機械学習モデルを用いて、音声認識タスクを分類と回帰問題の両方として定式化する。
まず,5つのカテゴリー(頻度,発音,内容,文法,語彙,音響)で言語学の特徴を抽出し,応答を学習する。
比較すると,回帰に基づくモデルでは,分類法と同等かそれ以上の性能があることがわかった。
論文 参考訳(メタデータ) (2021-11-30T06:28:58Z) - Modeling morphology with Linear Discriminative Learning: considerations
and design choices [1.3535770763481905]
本研究では,線形識別学習を用いて屈折形態をモデル化する際に生じる一連の方法論的問題に対処する。
形態の表現と意味がモデルパフォーマンスに与える影響について、どのように判断したかを説明する。
本稿では,文脈における単語の学習を近似するために,モデルをどのように設定するかについて議論する。
論文 参考訳(メタデータ) (2021-06-15T07:37:52Z) - Explaining the Deep Natural Language Processing by Mining Textual
Interpretable Features [3.819533618886143]
T-EBAnOは、深層自然言語モデルに適した、予測ローカルでクラスベースのモデル-言語的説明戦略である。
自動意思決定プロセスの背後にある理由について、客観的で、人間可読で、ドメイン固有の評価を提供する。
論文 参考訳(メタデータ) (2021-06-12T06:25:09Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。