論文の概要: Can Large Language Models Understand Context?
- arxiv url: http://arxiv.org/abs/2402.00858v1
- Date: Thu, 1 Feb 2024 18:55:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 13:49:55.386993
- Title: Can Large Language Models Understand Context?
- Title(参考訳): 大規模言語モデルは文脈を理解できるか?
- Authors: Yilun Zhu, Joel Ruben Antony Moniz, Shruti Bhargava, Jiarui Lu, Dhivya
Piraviperumal, Site Li, Yuan Zhang, Hong Yu, Bo-Hsiang Tseng
- Abstract要約: 本稿では,生成モデルの評価に適合する既存のデータセットを適応させることにより,文脈理解ベンチマークを提案する。
実験結果から, 事前学習された高密度モデルでは, 最先端の微調整モデルと比較して, よりニュアンスな文脈特徴の理解に苦慮していることが明らかとなった。
LLM圧縮は研究と実世界のアプリケーションの両方において重要度が高くなっているため、文脈学習環境下での量子化モデルの文脈理解を評価する。
- 参考スコア(独自算出の注目度): 17.196362853457412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding context is key to understanding human language, an ability
which Large Language Models (LLMs) have been increasingly seen to demonstrate
to an impressive extent. However, though the evaluation of LLMs encompasses
various domains within the realm of Natural Language Processing, limited
attention has been paid to probing their linguistic capability of understanding
contextual features. This paper introduces a context understanding benchmark by
adapting existing datasets to suit the evaluation of generative models. This
benchmark comprises of four distinct tasks and nine datasets, all featuring
prompts designed to assess the models' ability to understand context. First, we
evaluate the performance of LLMs under the in-context learning pretraining
scenario. Experimental results indicate that pre-trained dense models struggle
with understanding more nuanced contextual features when compared to
state-of-the-art fine-tuned models. Second, as LLM compression holds growing
significance in both research and real-world applications, we assess the
context understanding of quantized models under in-context-learning settings.
We find that 3-bit post-training quantization leads to varying degrees of
performance reduction on our benchmark. We conduct an extensive analysis of
these scenarios to substantiate our experimental results.
- Abstract(参考訳): 文脈を理解することは、人間の言語を理解するための鍵であり、大きな言語モデル(LLM)が目覚ましいほどに実証されている能力である。
しかし,LLMの評価は自然言語処理の領域内において様々な領域を包含しているが,文脈的特徴を理解する言語能力の検証には注意が払われている。
本稿では,既存のデータセットを生成モデルに適合させたコンテキスト理解ベンチマークを提案する。
このベンチマークは、4つの異なるタスクと9つのデータセットで構成されており、いずれもモデルがコンテキストを理解する能力を評価するように設計されたプロンプトを特徴としている。
まず,文脈内学習事前学習シナリオにおいて,llmの性能を評価する。
実験結果から, 事前学習された高密度モデルでは, 最先端の微調整モデルと比較して, よりニュアンスな文脈特徴の理解に苦慮していることが示された。
第二に、LLM圧縮は研究と実世界のアプリケーションの両方において重要性が増しているため、文脈学習環境下での量子化モデルの文脈理解を評価する。
トレーニング後の3ビットの量子化は,ベンチマークのパフォーマンス低下につながることが分かりました。
実験結果を実証するために,これらのシナリオを広範囲に分析する。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
大規模言語モデル(LLM)は、様々な自然言語理解タスクにおいて顕著な能力を示している。
我々は,LLMを用いたテキスト内学習を支援するための説明型ソフトアンサンブルフレームワークであるEASEを提案する。
論文 参考訳(メタデータ) (2023-11-13T06:13:38Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - A Theory of Emergent In-Context Learning as Implicit Structure Induction [8.17811111226145]
大きな言語モデルをスケールすると、実例からコンテキスト内で学習する能力が創発的になる。
文脈内学習は、自然言語データにみられる合成操作の組換えに依拠していると論じる。
入力の合成構造の表現によって、文脈内学習がどうサポートされるかを示す。
論文 参考訳(メタデータ) (2023-03-14T15:24:05Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。