Fusion of rain radar images and wind forecasts in a deep learning model
applied to rain nowcasting
- URL: http://arxiv.org/abs/2012.05015v2
- Date: Tue, 12 Jan 2021 16:11:11 GMT
- Title: Fusion of rain radar images and wind forecasts in a deep learning model
applied to rain nowcasting
- Authors: Vincent Bouget and Dominique B\'er\'eziat and Julien Brajard and
Anastase Charantonis and Arthur Filoche
- Abstract summary: We train a deep learning model on a fusion of rainfall radar images and wind velocity produced by a weather forecast model.
Our network outperforms by 8% the F1-score calculated for the optical flow on moderate and higher rain events for forecasts at a horizon time of 30 min.
Merging rain and wind data has also proven to stabilize the training process and enabled significant improvement especially on the difficult-to-predict high precipitation rainfalls.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Short- or mid-term rainfall forecasting is a major task with several
environmental applications such as agricultural management or flood risk
monitoring. Existing data-driven approaches, especially deep learning models,
have shown significant skill at this task, using only rainfall radar images as
inputs. In order to determine whether using other meteorological parameters
such as wind would improve forecasts, we trained a deep learning model on a
fusion of rainfall radar images and wind velocity produced by a weather
forecast model. The network was compared to a similar architecture trained only
on radar data, to a basic persistence model and to an approach based on optical
flow. Our network outperforms by 8% the F1-score calculated for the optical
flow on moderate and higher rain events for forecasts at a horizon time of 30
min. Furthermore, it outperforms by 7% the same architecture trained using only
rainfall radar images. Merging rain and wind data has also proven to stabilize
the training process and enabled significant improvement especially on the
difficult-to-predict high precipitation rainfalls.
Related papers
- TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
This study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration.
Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, but also finely adapt to complicated and diverse practical rainy images.
Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks.
arXiv Detail & Related papers (2024-03-15T03:27:39Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Reduction of rain-induced errors for wind speed estimation on SAR
observations using convolutional neural networks [0.16067645574373132]
We train a wind speed estimator with reduced errors under rain.
Results demonstrate the capacity of deep learning models to correct rain-related errors in SAR products.
arXiv Detail & Related papers (2023-03-16T10:19:14Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Deep-Learning-Based Precipitation Nowcasting with Ground Weather Station
Data and Radar Data [14.672132394870445]
We propose ASOC, a novel attentive method for effectively exploiting ground-based meteorological observations from multiple weather stations.
ASOC is designed to capture temporal dynamics of the observations and also contextual relationships between them.
We show that such a combination improves the average critical success index (CSI) of predicting heavy (at least 10 mm/hr) and light (at least 1 mm/hr) rainfall events at 1-6 hr lead times by 5.7%.
arXiv Detail & Related papers (2022-10-20T14:59:58Z) - Deep Learning for Rain Fade Prediction in Satellite Communications [6.619650459583444]
Line of sight satellite systems, unmanned aerial vehicles, high-altitude platforms, and microwave links are extremely susceptible to rain.
Rain fade forecasting for these systems is critical because it allows the system to switch between ground gateways proactively before a rain fade event to maintain seamless service.
Deep learning architecture is proposed that forecasts future rain fade using satellite and radar imagery data as well as link power measurements.
arXiv Detail & Related papers (2021-10-02T00:43:02Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
We propose a new deep learning model for precipitation nowcasting that includes both the discrimination and attention techniques.
The model is examined on a newly-built benchmark dataset that contains both radar data and actual rain data.
arXiv Detail & Related papers (2021-02-16T14:22:54Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
This study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures.
Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks.
arXiv Detail & Related papers (2020-05-19T05:52:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.