Seeking Visual Discomfort: Curiosity-driven Representations for
Reinforcement Learning
- URL: http://arxiv.org/abs/2110.00784v1
- Date: Sat, 2 Oct 2021 11:15:04 GMT
- Title: Seeking Visual Discomfort: Curiosity-driven Representations for
Reinforcement Learning
- Authors: Elie Aljalbout and Maximilian Ulmer and Rudolph Triebel
- Abstract summary: We present an approach to improve sample diversity for state representation learning.
Our proposed approach boosts the visitation of problematic states, improves the learned state representation, and outperforms the baselines for all tested environments.
- Score: 12.829056201510994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-based reinforcement learning (RL) is a promising approach to solve
control tasks involving images as the main observation. State-of-the-art RL
algorithms still struggle in terms of sample efficiency, especially when using
image observations. This has led to increased attention on integrating state
representation learning (SRL) techniques into the RL pipeline. Work in this
field demonstrates a substantial improvement in sample efficiency among other
benefits. However, to take full advantage of this paradigm, the quality of
samples used for training plays a crucial role. More importantly, the diversity
of these samples could affect the sample efficiency of vision-based RL, but
also its generalization capability. In this work, we present an approach to
improve sample diversity for state representation learning. Our method enhances
the exploration capability of RL algorithms, by taking advantage of the SRL
setup. Our experiments show that our proposed approach boosts the visitation of
problematic states, improves the learned state representation, and outperforms
the baselines for all tested environments. These results are most apparent for
environments where the baseline methods struggle. Even in simple environments,
our method stabilizes the training, reduces the reward variance, and promotes
sample efficiency.
Related papers
- DEAR: Disentangled Environment and Agent Representations for Reinforcement Learning without Reconstruction [4.813546138483559]
Reinforcement Learning (RL) algorithms can learn robotic control tasks from visual observations, but they often require a large amount of data.
In this paper, we explore how the agent's knowledge of its shape can improve the sample efficiency of visual RL methods.
We propose a novel method, Disentangled Environment and Agent Representations, that uses the segmentation mask of the agent as supervision.
arXiv Detail & Related papers (2024-06-30T09:15:21Z) - Learning Future Representation with Synthetic Observations for Sample-efficient Reinforcement Learning [12.277005054008017]
In visual Reinforcement Learning (RL), upstream representation learning largely determines the effect of downstream policy learning.
We try to improve auxiliary representation learning for RL by enriching auxiliary training data.
We propose a training-free method to synthesize observations that may contain future information.
The remaining synthetic observations and real observations then serve as the auxiliary data to achieve a clustering-based temporal association task.
arXiv Detail & Related papers (2024-05-20T02:43:04Z) - Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - Improving Reinforcement Learning Efficiency with Auxiliary Tasks in
Non-Visual Environments: A Comparison [0.0]
This study compares common auxiliary tasks based on, to the best of our knowledge, the only decoupled representation learning method for low-dimensional non-visual observations.
Our findings show that representation learning with auxiliary tasks only provides performance gains in sufficiently complex environments.
arXiv Detail & Related papers (2023-10-06T13:22:26Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - Light-weight probing of unsupervised representations for Reinforcement Learning [20.638410483549706]
We study whether linear probing can be a proxy evaluation task for the quality of unsupervised RL representation.
We show that the probing tasks are strongly rank correlated with the downstream RL performance on the Atari100k Benchmark.
This provides a more efficient method for exploring the space of pretraining algorithms and identifying promising pretraining recipes.
arXiv Detail & Related papers (2022-08-25T21:08:01Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
We develop a model-agnostic Contrastive-Curiosity-Driven Learning Framework (CCLF) for reinforcement learning.
CCLF fully exploit sample importance and improve learning efficiency in a self-supervised manner.
We evaluate this approach on the DeepMind Control Suite, Atari, and MiniGrid benchmarks.
arXiv Detail & Related papers (2022-05-02T14:42:05Z) - Mask-based Latent Reconstruction for Reinforcement Learning [58.43247393611453]
Mask-based Latent Reconstruction (MLR) is proposed to predict the complete state representations in the latent space from the observations with spatially and temporally masked pixels.
Extensive experiments show that our MLR significantly improves the sample efficiency in deep reinforcement learning.
arXiv Detail & Related papers (2022-01-28T13:07:11Z) - Exploratory State Representation Learning [63.942632088208505]
We propose a new approach called XSRL (eXploratory State Representation Learning) to solve the problems of exploration and SRL in parallel.
On one hand, it jointly learns compact state representations and a state transition estimator which is used to remove unexploitable information from the representations.
On the other hand, it continuously trains an inverse model, and adds to the prediction error of this model a $k$-step learning progress bonus to form the objective of a discovery policy.
arXiv Detail & Related papers (2021-09-28T10:11:07Z) - Making Curiosity Explicit in Vision-based RL [12.829056201510994]
Vision-based reinforcement learning (RL) is a promising technique to solve control tasks involving images as the main observation.
State-of-the-art RL algorithms still struggle in terms of sample efficiency.
We present an approach to improve the sample diversity.
arXiv Detail & Related papers (2021-09-28T09:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.