論文の概要: Probabilistic Prediction for Binary Treatment Choice: with focus on
personalized medicine
- arxiv url: http://arxiv.org/abs/2110.00864v1
- Date: Sat, 2 Oct 2021 18:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:21:59.176893
- Title: Probabilistic Prediction for Binary Treatment Choice: with focus on
personalized medicine
- Title(参考訳): バイナリ治療選択の確率予測 : パーソナライズド医療を中心に
- Authors: Charles F. Manski
- Abstract要約: 本稿では,統計的決定理論をサンプルデータを用いた治療選択に適用する研究を拡張した。
特定の新しい貢献は、監視とアグレッシブな治療の間の臨床選択における疾患確率の推定を用いて、as-if最適化を研究することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper extends my research applying statistical decision theory to
treatment choice with sample data, using maximum regret to evaluate the
performance of treatment rules. The specific new contribution is to study as-if
optimization using estimates of illness probabilities in clinical choice
between surveillance and aggressive treatment. Beyond its specifics, the paper
sends a broad message. Statisticians and computer scientists have addressed
conditional prediction for decision making in indirect ways, the former
applying classical statistical theory and the latter measuring prediction
accuracy in test samples. Neither approach is satisfactory. Statistical
decision theory provides a coherent, generally applicable methodology.
- Abstract(参考訳): 本稿では, 統計決定理論をサンプルデータを用いた治療選択に適用し, 最大後悔を用いて治療規則の性能を評価する。
特定の新しい貢献は、監視とアグレッシブ治療の間の臨床選択における疾患確率の推定を用いて、as-if最適化を研究することである。
具体的な内容以外にも、この論文は幅広いメッセージを送っている。
統計学者とコンピュータ科学者は間接的に意思決定の条件付き予測に対処し、前者は古典的統計理論を適用し、後者はテストサンプルにおける予測精度を測定した。
どちらのアプローチも満足できない。
統計的決定理論はコヒーレントで一般に適用可能な方法論を提供する。
関連論文リスト
- Are causal effect estimations enough for optimal recommendations under multitreatment scenarios? [2.4578723416255754]
異なる治療やコントロール下での潜在的な結果を比較するために、因果効果推定分析を含めることが不可欠である。
マルチトリートメント選択のための包括的方法論を提案する。
論文 参考訳(メタデータ) (2024-10-07T16:37:35Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Detecting critical treatment effect bias in small subgroups [11.437076464287822]
本研究では, 平均治療効果以上の観察研究をベンチマークするための新しい手法を提案する。
まず, 2つの研究から推定される治療効果が, 関連する特徴のセットに基づいて, ある程度の許容範囲で異なるという, ヌル仮説の統計的試験を設計する。
次に,観測研究における任意の部分群に対して,最大バイアス強度に対する有意な下限を推定する。
論文 参考訳(メタデータ) (2024-04-29T17:44:28Z) - Causal Inference under Data Restrictions [0.0]
この論文は、不確実性とデータ制限の下での現代の因果推論に焦点を当てている。
これには、ネオアジュバント臨床試験、分散データネットワーク、堅牢な個別化意思決定へのアプリケーションが含まれる。
論文 参考訳(メタデータ) (2023-01-20T20:14:32Z) - Stochastic Intervention for Causal Effect Estimation [7.015556609676951]
介入効果を推定するための新しい確率スコアと介入効果推定器(SIE)を提案する。
また,介入効果(Ge-SIO)に特異的な遺伝的アルゴリズムを設計し,意思決定の因果的証拠を提供する。
提案手法とアルゴリズムは,最先端のベースラインと比較して,大幅な性能向上を実現することができる。
論文 参考訳(メタデータ) (2021-05-27T01:12:03Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - A scoping review of causal methods enabling predictions under
hypothetical interventions [4.801185839732629]
意思決定を支援するために予測モデルを使用する場合、仮説的な介入の下で結果を予測する必要があることが多い。
我々は,2019年12月までに出版された文献を体系的にレビューし,仮説的介入による予測モデルの使用を可能にするために因果的考察を用いた健康領域の論文を考察した。
臨床予測モデルへの仮説的介入の下での予測を可能にするための2つの幅広い方法論的アプローチが存在する。
論文 参考訳(メタデータ) (2020-11-19T13:36:26Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。