Lectures on quantum supreme matter
- URL: http://arxiv.org/abs/2110.00961v2
- Date: Sun, 26 Dec 2021 13:46:40 GMT
- Title: Lectures on quantum supreme matter
- Authors: Jan Zaanen
- Abstract summary: Notes are based on lectures serving the advanced graduate education of the Delta Institute of Theoretical Physics in the Netherlands in autumn 2021.
The goal is to explain in a language that can be understood by non-specialists very recent advances in quantum information.
The holographic duality discovered in string theory appears to be a mathematical machinery capable of computing observable properties of such matter.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: These notes are based on lectures serving the advanced graduate education of
the Delta Institute of Theoretical Physics in the Netherlands in autumn 2021.
The goal is to explain in a language that can be understood by non-specialists
very recent advances in quantum information and especially string theory
suggesting the existence of entirely new forms of matter. These are metallic
states characterized by an extremely dense many body entanglement, requiring
the supremacy of the quantum computer to be completely enumerated. The
holographic duality discovered in string theory appears to be a mathematical
machinery capable of computing observable properties of such matter, suggesting
the presence of universal general principles governing its phenomenology. The
case is developing that these principles may well apply to the highly
mysterious physical properties observed in the high temperature superconductors
and other strongly interacting electron systems of condensed matter physics.
Related papers
- Quantum thermodynamics as a gauge theory [0.0]
A gauge theory for quantum thermodynamics was introduced, defining gauge invariant work and heat.
We extend that theory in two significant ways, incorporating energy spectrum degeneracies, which were previously overlooked.
This results in a complete framework for quantum thermodynamics grounded in the principle of gauge invariance.
arXiv Detail & Related papers (2024-09-12T00:46:48Z) - Quantum states and quantum computing [1.104960878651584]
In quantum theory, a quantum state $vert alpha,trangle$ is situated in an evolving within Hilbert space, portraying the system's reality with inherent uncertainty.
This article aims to elucidate the fundamental concepts of quantum field theory and their interconnections with quantum computing.
arXiv Detail & Related papers (2024-09-03T14:23:50Z) - Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
Theory of quantum electrical circuits goes under the name of circuit quantum electrodynamics or circuit-QED.
The goal of the theory is to provide a quantum description of the most relevant degrees of freedom.
These lecture notes aim at giving a pedagogical overview of this subject for theoretically-oriented Master or PhD students in physics and electrical engineering.
arXiv Detail & Related papers (2023-12-08T19:26:34Z) - Postulating the Unicity of the Macroscopic Physical World [0.0]
We argue that the unicity of the macroscopic world is a fundamental postulate of physics, rather than an issue that must be mathematically justified or demonstrated.
This is made possible by using general operator algebras to extend the mathematical description of the physical world towards macroscopic systems.
arXiv Detail & Related papers (2023-10-09T19:21:36Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum many-body systems in thermal equilibrium [0.0]
The thermal or equilibrium ensemble is one of the most ubiquitous states of matter.
We focus on mathematically rigorous statements, many of them inspired by ideas and tools from quantum information theory.
arXiv Detail & Related papers (2022-04-18T14:46:41Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Non-Hermitian Physics [4.511923587827301]
Review is given on the foundations and applications of non-Hermitian classical and quantum physics.
In particular, we discuss rich and unique phenomena found therein, such as unidirectional invisibility.
Other topics related to non-Hermitian physics, including nonreciprocal transport, speed limits, nonunitary quantum walk, are also reviewed.
arXiv Detail & Related papers (2020-06-02T18:00:01Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.