論文の概要: Towards General-purpose Infrastructure for Protecting Scientific Data
Under Study
- arxiv url: http://arxiv.org/abs/2110.01315v1
- Date: Mon, 4 Oct 2021 10:48:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 20:44:23.354566
- Title: Towards General-purpose Infrastructure for Protecting Scientific Data
Under Study
- Title(参考訳): 科学データ保護のための総合的基盤を目指して
- Authors: Andrew Trask, Kritika Prakash
- Abstract要約: プライバシー技術は、この緊張を軽減するために、研究対象のサンプルを二次目的に使用する能力に制限を課すことを目的としている。
最近の研究は、これらのテクニックをデータ保護のためのエンドツーエンドシステムに組み入れ始めている。
本研究では,プライバシ・レイマンがプライベートデータ上で実験を行うのに慣れ親しんだツールを使用するのに十分であり,インフラストラクチャが自動的にプライバシ・リークを禁止しているのに対して,そのような組み合わせを最初に組み立てる。
- 参考スコア(独自算出の注目度): 1.1675763847424785
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The scientific method presents a key challenge to privacy because it requires
many samples to support a claim. When samples are commercially valuable or
privacy-sensitive enough, their owners have strong reasons to avoid releasing
them for scientific study. Privacy techniques seek to mitigate this tension by
enforcing limits on one's ability to use studied samples for secondary
purposes. Recent work has begun combining these techniques into end-to-end
systems for protecting data. In this work, we assemble the first such
combination which is sufficient for a privacy-layman to use familiar tools to
experiment over private data while the infrastructure automatically prohibits
privacy leakage. We support this theoretical system with a prototype within the
Syft privacy platform using the PyTorch framework.
- Abstract(参考訳): 科学的手法は、クレームをサポートするために多くのサンプルを必要とするため、プライバシーにとって重要な課題である。
サンプルが商業的に価値があり、プライバシーに敏感な場合、その所有者は科学的研究のためにサンプルを公開しない強い理由がある。
プライバシー技術は、この緊張を軽減するために、研究対象のサンプルを二次目的に使用する能力に制限を加える。
最近の研究は、これらのテクニックをデータ保護のためのエンドツーエンドシステムに組み入れ始めている。
そこで本研究では,インフラが自動的にプライバシーリークを禁止している間に,親しみやすいツールを使ってプライベートデータを実験できるような,最初の組み合わせを組み立てる。
我々はこの理論システムを、pytorchフレームワークを使用したsyft privacy platformのプロトタイプでサポートする。
関連論文リスト
- FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
実際には、制御されたデータアクセスは、多くの産業や研究環境でデータプライバシを保護する主要な方法である。
我々は,FT-PrivacyScoreのプロトタイプを開発し,モデル微調整作業に参加する際のプライバシーリスクを効率よく定量的に推定できることを実証した。
論文 参考訳(メタデータ) (2024-10-30T02:41:26Z) - Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Defining 'Good': Evaluation Framework for Synthetic Smart Meter Data [14.779917834583577]
スマートメーターデータセットのプライバシーリスクを評価するには,標準プライバシ攻撃手法が不十分であることを示す。
本稿では,トレーニングデータを不確実なアウトレーラで注入し,それらのアウトレーラに直接プライバシ攻撃を発生させる手法を提案する。
論文 参考訳(メタデータ) (2024-07-16T14:41:27Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Can Language Models be Instructed to Protect Personal Information? [30.187731765653428]
シミュレーションシナリオにおいて、モデルが特定の個人情報のカテゴリを保護するように指示されたとき、プライバシ/ユーティリティトレードオフを評価するためのベンチマークであるPrivQAを紹介します。
我々は,テキストや画像入力による単純なジェイルブレイク手法により,敵が容易にこれらの保護を回避できることを見出した。
PrivQAは、プライバシー保護を改善した新しいモデルの開発と、これらの保護の敵意的な堅牢性をサポートする可能性があると考えています。
論文 参考訳(メタデータ) (2023-10-03T17:30:33Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
プライベート機械学習では、既存の監査メカニズムは厳格である。
彼らは不確実な最悪の仮定の下でのみ厳密な見積もりを行う。
我々は、自然(逆向きではない)データセットの厳密なプライバシー推定を得られる改善された監査スキームを設計する。
論文 参考訳(メタデータ) (2023-02-15T21:40:33Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - The Privacy Onion Effect: Memorization is Relative [76.46529413546725]
もっとも脆弱な外接点の"層"を取り除くことで、前もって安全だった点の新たな層を同じ攻撃に晒す。
これは、機械学習のようなプライバシー強化技術が、他のユーザーのプライバシーに悪影響を及ぼす可能性を示唆している。
論文 参考訳(メタデータ) (2022-06-21T15:25:56Z) - Privacy-Aware Compression for Federated Data Analysis [31.970815289473965]
フェデレーションデータ分析(Federated Data Analytics)は、サーバが低帯域のユーザデバイス群からノイズの多い応答をコンパイルし、集計統計を推定する分散データ分析フレームワークである。
このフレームワークの2つの大きな課題は、ユーザデータがしばしばセンシティブであり、ユーザデバイスがネットワーク帯域幅が低いため、圧縮である。
我々は、この問題を概観し、特定の通信予算で機能するプライバシーに配慮した圧縮メカニズムのファミリーを設計する。
論文 参考訳(メタデータ) (2022-03-15T17:57:13Z) - Learning With Differential Privacy [3.618133010429131]
異なるプライバシーは、漏洩に対する適切な保護を約束して救助にやってくる。
データの収集時にランダムな応答技術を使用し、より優れたユーティリティで強力なプライバシを保証します。
論文 参考訳(メタデータ) (2020-06-10T02:04:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。