論文の概要: Informing Autonomous Deception Systems with Cyber Expert Performance
Data
- arxiv url: http://arxiv.org/abs/2109.00066v1
- Date: Tue, 31 Aug 2021 20:28:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-02 14:15:22.704207
- Title: Informing Autonomous Deception Systems with Cyber Expert Performance
Data
- Title(参考訳): サイバー専門家のパフォーマンスデータを用いた自律的欺取システムの実現
- Authors: Maxine Major, Brian Souza, Joseph DiVita, Kimberly Ferguson-Walter
- Abstract要約: 本稿では、逆強化学習(IRL)を用いて攻撃行動、攻撃行動の有用性、究極的にはサイバー詐欺が阻止できる決定ポイントの洞察を得る可能性について検討する。
例えば、Tularosaの研究は、攻撃者がよく使う現実世界の技術とツールの実験データを提供し、そこからコアデータを活用して、自律的なサイバー防衛システムに通知する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of artificial intelligence (AI) algorithms in practice
depends on the realism and correctness of the data, models, and feedback
(labels or rewards) provided to the algorithm. This paper discusses methods for
improving the realism and ecological validity of AI used for autonomous cyber
defense by exploring the potential to use Inverse Reinforcement Learning (IRL)
to gain insight into attacker actions, utilities of those actions, and
ultimately decision points which cyber deception could thwart. The Tularosa
study, as one example, provides experimental data of real-world techniques and
tools commonly used by attackers, from which core data vectors can be leveraged
to inform an autonomous cyber defense system.
- Abstract(参考訳): 人工知能(AI)アルゴリズムの性能は、アルゴリズムが提供するデータ、モデル、フィードバック(ラベルまたは報酬)の現実性と正確性に依存する。
本稿では、逆強化学習(Inverse Reinforcement Learning, IRL)を用いて攻撃行動、これらの行動の有用性、そして最終的にサイバー詐欺が阻止できる決定ポイントの洞察を得ることにより、自律的なサイバー防衛に使用されるAIのリアリズムと生態的妥当性を改善する方法について議論する。
例えば、Tularosaの研究は、攻撃者がよく使う現実世界の技術とツールの実験データを提供し、そこからコアデータベクターを利用して自律的なサイバー防御システムに通知する。
関連論文リスト
- AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset [1.9573380763700712]
サイバー攻撃の属性に関する最初のデータセットを提供する。
私たちのものは、句や文にまたがるいくつかのものを含む、コンテキストの詳細を持った豊富なアノテーションセットを提供します。
攻撃属性に対するデータセットの有効性を示すため,広範囲な実験を行い,NLP手法を適用した。
論文 参考訳(メタデータ) (2024-08-09T16:10:35Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
論文 参考訳(メタデータ) (2024-05-09T18:15:12Z) - Your Room is not Private: Gradient Inversion Attack on Reinforcement
Learning [47.96266341738642]
プライバシーは、ロボットが実質的な個人情報にアクセスすることによって、具体化されたAIの領域における重要な関心事として浮上する。
本稿では, 状態, 行動, 監視信号の再構成に勾配インバージョンを利用する, 値ベースアルゴリズムと勾配ベースアルゴリズムに対する攻撃を提案する。
論文 参考訳(メタデータ) (2023-06-15T16:53:26Z) - Planning for Learning Object Properties [117.27898922118946]
我々は、物体特性を象徴的な計画問題として認識するために、ニューラルネットワークを自動的に訓練する問題を定式化する。
トレーニングデータセット作成と学習プロセスを自動化するための戦略を作成するために,計画手法を使用します。
シミュレーションと実環境の両方で実験的な評価を行う。
論文 参考訳(メタデータ) (2023-01-15T09:37:55Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - A Tutorial on Adversarial Learning Attacks and Countermeasures [0.0]
機械学習モデルは、それを明示的にプログラムすることなく、高精度な予測を行うことができる。
敵の学習攻撃は 深刻なセキュリティの脅威を 引き起こす
本稿では、敵対的学習の原理を詳細に解説し、異なる攻撃シナリオを説明し、この脅威に対する最先端の防御機構について深い洞察を与える。
論文 参考訳(メタデータ) (2022-02-21T17:14:45Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。