Artificial Neural Network and its Application Research Progress in
Distillation
- URL: http://arxiv.org/abs/2110.01449v1
- Date: Fri, 1 Oct 2021 06:25:53 GMT
- Title: Artificial Neural Network and its Application Research Progress in
Distillation
- Authors: Jing Sun, Qi Tang
- Abstract summary: Artificial neural networks learn various rules and algorithms to form different ways of processing information.
This article gives a basic overview of artificial neural networks, and introduces the application research of artificial neural networks in distillation at home and abroad.
- Score: 3.2484467083803583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks learn various rules and algorithms to form
different ways of processing information, and have been widely used in various
chemical processes. Among them, with the development of rectification
technology, its production scale continues to expand, and its calculation
requirements are also more stringent, because the artificial neural network has
the advantages of self-learning, associative storage and high-speed search for
optimized solutions, it can make high-precision simulation predictions for
rectification operations, so it is widely used in the chemical field of
rectification. This article gives a basic overview of artificial neural
networks, and introduces the application research of artificial neural networks
in distillation at home and abroad.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Design and development of opto-neural processors for simulation of
neural networks trained in image detection for potential implementation in
hybrid robotics [0.0]
Living neural networks offer advantages of lower power consumption, faster processing, and biological realism.
This work proposes a simulated living neural network trained indirectly by backpropagating STDP based algorithms using precision activation by optogenetics.
arXiv Detail & Related papers (2024-01-17T04:42:49Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - An Artificial Neural Network Functionalized by Evolution [2.0625936401496237]
We propose a hybrid model which combines the tensor calculus of feed-forward neural networks with Pseudo-Darwinian mechanisms.
This allows for finding topologies that are well adapted for elaboration of strategies, control problems or pattern recognition tasks.
In particular, the model can provide adapted topologies at early evolutionary stages, and'structural convergence', which can found applications in robotics, big-data and artificial life.
arXiv Detail & Related papers (2022-05-16T14:49:58Z) - On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future [60.99717891994599]
We propose an approach that extracts information from neuroevolutionary runs, and use it to build a metamodel.
We inspect the best structures found during neuroevolutionary searches of generative adversarial networks with varying characteristics.
arXiv Detail & Related papers (2021-05-26T20:55:29Z) - A review of neural network algorithms and their applications in
supercritical extraction [5.455337487096457]
This paper briefly describes the basic concepts and research progress of neural networks and supercritical extraction.
It aims to provide reference for the development and innovation of industry technology.
arXiv Detail & Related papers (2020-10-31T01:51:02Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
Spiking Neural Network algorithms hold the promise to implement advanced artificial intelligence using a fraction of the computations and power requirements.
This paper explains the theoretical workings of neuromorphic technologies based on spikes, and overviews the state-of-art in hardware processors, software platforms and neuromorphic sensing devices.
A progression path is paved for current machine learning specialists to update their skillset, as well as classification or predictive models from the current generation of deep neural networks to SNNs.
arXiv Detail & Related papers (2020-07-10T20:54:42Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.