論文の概要: Implementation of Parallel Simplified Swarm Optimization in CUDA
- arxiv url: http://arxiv.org/abs/2110.01470v1
- Date: Fri, 1 Oct 2021 00:15:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-07 08:01:42.790942
- Title: Implementation of Parallel Simplified Swarm Optimization in CUDA
- Title(参考訳): CUDAにおける並列簡易Swarm最適化の実装
- Authors: Wei-Chang Yeh, Zhenyao Liu, Shi-Yi Tan, Shang-Ke Huang
- Abstract要約: 最適化コンピューティングでは、インテリジェントなSwarmアルゴリズム(SIAs)が並列化に適している。
本稿では,計算能力と汎用性を考慮したGPUに基づくSimplified Swarm Algorithm Optimization (PSSO)を提案する。
結果から,Nの次数による時間複雑性の低減が達成され,資源プリエンプションの問題は完全に回避された。
- 参考スコア(独自算出の注目度): 2.322689362836168
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: As the acquisition cost of the graphics processing unit (GPU) has decreased,
personal computers (PC) can handle optimization problems nowadays. In
optimization computing, intelligent swarm algorithms (SIAs) method is suitable
for parallelization. However, a GPU-based Simplified Swarm Optimization
Algorithm has never been proposed. Accordingly, this paper proposed Parallel
Simplified Swarm Optimization (PSSO) based on the CUDA platform considering
computational ability and versatility. In PSSO, the theoretical value of time
complexity of fitness function is O (tNm). There are t iterations and N fitness
functions, each of which required pair comparisons m times. pBests and gBest
have the resource preemption when updating in previous studies. As the
experiment results showed, the time complexity has successfully reduced by an
order of magnitude of N, and the problem of resource preemption was avoided
entirely.
- Abstract(参考訳): グラフィックス処理ユニット(GPU)の取得コストが減少するにつれて、パーソナルコンピュータ(PC)が最適化問題に対処できるようになった。
最適化コンピューティングでは、インテリジェントなSwarmアルゴリズム(SIAs)が並列化に適している。
しかし、GPUベースのSimplified Swarm Optimization Algorithmは提案されていない。
そこで本稿では,計算能力と汎用性を考慮したCUDAプラットフォームに基づくParallel Simplified Swarm Optimization (PSSO)を提案する。
PSSO では、フィットネス関数の時間複雑性の理論値は O (tNm) である。
t 反復と N 適合関数があり、それぞれが m 倍のペア比較を必要とする。
pBestsとgBestsは、以前の研究で更新する際に、リソースプリエンプションを持つ。
実験結果が示すように、時間複雑性はマグニチュードNの順に減少し、資源プリエンプションの問題は完全に回避された。
関連論文リスト
- Sparsity-Constraint Optimization via Splicing Iteration [1.3622424109977902]
我々は sPlicing itEration (SCOPE) を用いたスペーサリティ制約最適化アルゴリズムを開発した。
SCOPEはパラメータをチューニングせずに効率的に収束する。
SCOPEを用いて2次最適化を解き、スパース分類器を学習し、バイナリ変数のスパースマルコフネットワークを復元する。
C++実装に基づいたオープンソースのPythonパッケージskscopeがGitHubで公開されている。
論文 参考訳(メタデータ) (2024-06-17T18:34:51Z) - GPU Based Differential Evolution: New Insights and Comparative Study [7.5961910202572644]
この研究は、GPUベースの微分進化アルゴリズムの文献における主要なアーキテクチャ選択についてレビューする。
新しいGPUベースの数値最適化ベンチマークを導入し、GPUベースのDEMアルゴリズムを評価し比較する。
論文 参考訳(メタデータ) (2024-05-26T12:40:39Z) - Freya PAGE: First Optimal Time Complexity for Large-Scale Nonconvex Finite-Sum Optimization with Heterogeneous Asynchronous Computations [92.1840862558718]
実用的な分散システムでは、労働者は概して均質ではなく、非常に多様な処理時間を持つ。
本稿では、任意に遅い計算を扱うための新しい並列手法Freyaを提案する。
Freyaは従来の手法と比較して,複雑性の保証が大幅に向上していることを示す。
論文 参考訳(メタデータ) (2024-05-24T13:33:30Z) - A Closed-form Solution for Weight Optimization in Fully-connected Feed-forward Neural Networks [2.1301560294088318]
本研究は、完全連結フィードフォワードニューラルネットワークにおける重み付け最適化問題に対処する。
提案手法は最小二乗法 (LS) を用いて閉形式における重み最適化の解を提供する。
シミュレーションおよび実験結果から,提案手法であるBPLSは,既存の手法と精度で競合するが,実行時間ではかなり上回っていることがわかった。
論文 参考訳(メタデータ) (2024-01-12T17:03:55Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Parallel Scheduling Self-attention Mechanism: Generalization and
Optimization [0.76146285961466]
本稿では,SAT(Satisfiability check)ソルバによって解決された小インスタンスの最適スケジューリングから導いた一般スケジューリングアルゴリズムを提案する。
余剰計算をスキップする際のさらなる最適化戦略も推進され、元の計算の約25%と50%の削減が達成される。
提案アルゴリズムは、入力ベクトルの数がアーキテクチャで利用可能な演算ユニットの数に割り切れる限り、問題のサイズにかかわらず適用可能である。
論文 参考訳(メタデータ) (2020-12-02T12:04:16Z) - Simple and Scalable Parallelized Bayesian Optimization [2.512827436728378]
本稿では,非同期並列設定のためのシンプルでスケーラブルなBO法を提案する。
マルチ層パーセプトロンのベンチマーク関数とハイパーパラメータ最適化を用いて実験を行った。
論文 参考訳(メタデータ) (2020-06-24T10:25:27Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。