論文の概要: An Empirical Investigation of Learning from Biased Toxicity Labels
- arxiv url: http://arxiv.org/abs/2110.01577v1
- Date: Mon, 4 Oct 2021 17:19:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:10:11.204752
- Title: An Empirical Investigation of Learning from Biased Toxicity Labels
- Title(参考訳): バイアス付き毒性ラベルからの学習に関する実証的研究
- Authors: Neel Nanda, Jonathan Uesato, Sven Gowal
- Abstract要約: 我々は,人間の注釈付きラベルの小さなデータセットと,合成されたラベルの大きいがノイズの多いデータセットを,異なるトレーニング戦略が活用できるかを検討する。
これらの手法の精度と公平性、および両者のトレードオフを評価する。
- 参考スコア(独自算出の注目度): 15.822714574671412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collecting annotations from human raters often results in a trade-off between
the quantity of labels one wishes to gather and the quality of these labels. As
such, it is often only possible to gather a small amount of high-quality
labels. In this paper, we study how different training strategies can leverage
a small dataset of human-annotated labels and a large but noisy dataset of
synthetically generated labels (which exhibit bias against identity groups) for
predicting toxicity of online comments. We evaluate the accuracy and fairness
properties of these approaches, and trade-offs between the two. While we find
that initial training on all of the data and fine-tuning on clean data produces
models with the highest AUC, we find that no single strategy performs best
across all fairness metrics.
- Abstract(参考訳): 人間のレーダからアノテーションを集めることは、収集したいラベルの量とそれらのラベルの品質のトレードオフをもたらすことが多い。
そのため、少量の高品質なラベルしか収集できないことが多い。
本稿では,オンラインコメントの有害性を予測するために,人間の注釈付きラベルの小さなデータセットと,合成されたラベル(アイデンティティグループに対するバイアスを示す)の大きなノイズの多いデータセットをどのように活用するかを検討する。
我々は,これらのアプローチの正確性と公平性,および両者のトレードオフを評価する。
すべてのデータに対する初期トレーニングとクリーンなデータの微調整によって、最高のAUCを持つモデルが生成されることは分かっていますが、すべてのフェアネス指標に対して、ひとつの戦略が最善を尽くすことはありませんでした。
関連論文リスト
- Learning with Confidence: Training Better Classifiers from Soft Labels [0.0]
教師付き機械学習では、モデルは通常、ハードラベルを持つデータ、すなわちクラスメンバーシップの明確な割り当てを用いて訓練される。
クラスラベル上の離散確率分布として表されるラベルの不確実性を組み込むことで,分類モデルの予測性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2024-09-24T13:12:29Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
本稿では,ラベルの修正を伴わずに,混乱したサンプルを積極的に使用することを提案する。
仮想カテゴリー(VC)は、モデルの最適化に安全に貢献できるように、各混乱したサンプルに割り当てられる。
私たちの興味深い発見は、密集した視覚タスクにおけるVC学習の利用に注目しています。
論文 参考訳(メタデータ) (2023-12-02T16:23:52Z) - GaussianMLR: Learning Implicit Class Significance via Calibrated
Multi-Label Ranking [0.0]
本稿では,ガウスMLRという新しい多ラベルランキング手法を提案する。
これは、正のラベルのランクを決定する暗黙のクラス重要性の値を学ぶことを目的としている。
提案手法は, 組み込まれた正のランク順の表現を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-03-07T14:09:08Z) - An Effective Approach for Multi-label Classification with Missing Labels [8.470008570115146]
分類ネットワークにさらなる複雑さをもたらすことなく、アノテーションのコストを削減するための擬似ラベルベースのアプローチを提案する。
新たな損失関数を設計することにより、各インスタンスが少なくとも1つの正のラベルを含む必要があるという要求を緩和することができる。
提案手法は,正のラベルと負のラベルの不均衡を扱える一方で,既存の欠落ラベル学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-24T23:13:57Z) - How many labelers do you have? A closer look at gold-standard labels [10.637125300701795]
我々は、非集約ラベル情報へのアクセスによって、ゴールドスタンダードラベルよりも、トレーニングの適格化がより実現可能であることを示す。
我々は,非アグリゲートラベルが学習性能を改善することを含む,実世界のデータセットの予測を行う。
論文 参考訳(メタデータ) (2022-06-24T02:33:50Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
本研究では,SPMLL (Single- positive multi-label learning) について検討した。
ラベルエンハンスメントを用いた単陽性MultIラベル学習という新しい手法を提案する。
ベンチマークデータセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-06-01T14:26:30Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
伝統的に、全ての無注釈ラベルは、単一正のマルチラベル学習(SPML)において負のラベルとして仮定される。
本研究では, 予測確率のエントロピーを最大化するエントロピー最大化(EM)損失を提案する。
非通知ラベルの正負ラベル不均衡を考慮し、非対称耐性戦略とより精密な監視を行うセルフペースト手順を備えた非対称擬似ラベル(APL)を提案する。
論文 参考訳(メタデータ) (2022-03-30T11:43:59Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
ディープニューラルネットワークは、大規模ラベル付きデータセットの助けを借りて、幅広いタスクで顕著なパフォーマンスを達成する。
ラベル付きデータの要求を軽減するため、ラベル付けされていないデータに擬似ラベルを付けることにより、学術と産業の両方で自己学習が広く使われている。
疑似ラベルの生成と利用を2つの独立した頭文字で分離するデバイアスドを提案する。
論文 参考訳(メタデータ) (2022-02-15T02:14:33Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
我々は、Model-Aware K-center (MAK)と呼ばれるオープンワールドなラベルなしデータサンプリングフレームワークを提案する。
MAKは、尾性、近接性、多様性の3つの単純な原則に従う。
我々はMAKが学習した機能の全体的な表現品質とクラスバランス性の両方を継続的に改善できることを実証した。
論文 参考訳(メタデータ) (2021-11-01T15:09:41Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
異なる負のサンプリングスキームが支配的ラベルと稀なラベルで暗黙的にトレードオフパフォーマンスを示す。
すべてのラベルのサブセットで作業することで生じるサンプリングバイアスと、ラベルの不均衡に起因するデータ固有のラベルバイアスの両方に明示的に対処する統一された手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T15:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。