論文の概要: Generalized Kernel Thinning
- arxiv url: http://arxiv.org/abs/2110.01593v6
- Date: Thu, 1 Aug 2024 01:49:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-02 19:06:02.024183
- Title: Generalized Kernel Thinning
- Title(参考訳): カーネルの汎用化
- Authors: Raaz Dwivedi, Lester Mackey,
- Abstract要約: Dwivedi and Mackeyのカーネルスライニングアルゴリズム(2021年)
我々は、ターゲットRKHSに直接適用されるKTが、任意のカーネルに対してより厳密で次元に依存しない保証を与えることを示す。
我々は、KT が分数核を持つと、非滑らかなカーネルに対してモンテカルロ MMD の保証がより良くなることを証明した。
- 参考スコア(独自算出の注目度): 27.44719786963725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The kernel thinning (KT) algorithm of Dwivedi and Mackey (2021) compresses a probability distribution more effectively than independent sampling by targeting a reproducing kernel Hilbert space (RKHS) and leveraging a less smooth square-root kernel. Here we provide four improvements. First, we show that KT applied directly to the target RKHS yields tighter, dimension-free guarantees for any kernel, any distribution, and any fixed function in the RKHS. Second, we show that, for analytic kernels like Gaussian, inverse multiquadric, and sinc, target KT admits maximum mean discrepancy (MMD) guarantees comparable to or better than those of square-root KT without making explicit use of a square-root kernel. Third, we prove that KT with a fractional power kernel yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels, like Laplace and Mat\'ern, that do not have square-roots. Fourth, we establish that KT applied to a sum of the target and power kernels (a procedure we call KT+) simultaneously inherits the improved MMD guarantees of power KT and the tighter individual function guarantees of target KT. In our experiments with target KT and KT+, we witness significant improvements in integration error even in $100$ dimensions and when compressing challenging differential equation posteriors.
- Abstract(参考訳): DwivediおよびMackey(2021)のカーネルスライニング(KT)アルゴリズムは、再生されたカーネルヒルベルト空間(RKHS)をターゲットとし、より滑らかでない平方根カーネルを活用することにより、独立サンプリングよりも効率的に確率分布を圧縮する。
ここでは4つの改善点を挙げる。
まず、KTをターゲットRKHSに直接適用すると、RKHS内の任意のカーネル、任意の分布、および任意の固定関数に対して、より厳密で次元のない保証が得られることを示す。
第二に、ガウス、逆マルチクワッドリック、シンクのような分析カーネルでは、ターゲットKTは平方根カーネルを明示的に使用することなく、平方根KTと同等以上の平均誤差(MMD)を保証する。
第三に、分数核を持つKTが、正方根を持たないラプラスやマトエルンのような非滑らかな核に対して、より優れたモンテカルロ MMDを保証することを証明している。
第4に、ターゲットカーネルとパワーカーネルの和(KT+と呼ぶプロシージャ)にKTを適用すると、パワーKTのMDD保証とターゲットKTのより厳密な個別関数保証を同時に継承する。
対象とするKTとKT+を用いた実験では,100ドルの次元においても積分誤差が大幅に改善され,また,挑戦的な微分方程式後部を圧縮した場合にも顕著に改善されることがわかった。
関連論文リスト
- Supervised Kernel Thinning [6.6157730528755065]
Dwivedi & Mackey (2024) のカーネルスライニングアルゴリズムは、一般的な点集合のより優れた圧縮を提供する。
我々はKTアルゴリズムを一般化し、カーネルメソッドを含む教師付き学習問題を高速化する。
論文 参考訳(メタデータ) (2024-10-17T16:48:51Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
マルチカーネルクラスタリング(MKC)は、ベースカーネルの集合から最適な情報融合を実現するためにコミットされる。
本稿では,新しい局所サンプル重み付きマルチカーネルクラスタリングモデルを提案する。
実験により, LSWMKCはより優れた局所多様体表現を有し, 既存のカーネルやグラフベースのクラスタリングアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2022-07-05T05:00:38Z) - KSD Aggregated Goodness-of-fit Test [38.45086141837479]
我々は、異なるカーネルで複数のテストを集約するKSDAggと呼ばれるテストを構築する戦略を導入する。
我々は、KSDAggのパワーに関する漸近的でない保証を提供する。
KSDAggは、他の最先端のKSDベースの適合性試験方法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-02T00:33:09Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
オフラインデータ(Meta-KeL)からカーネルをメタ学習することを提案する。
穏やかな条件下では、推定されたRKHSが有効な信頼セットを得られることを保証します。
また,ベイズ最適化におけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2022-02-01T17:46:51Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z) - The Fast Kernel Transform [21.001203328543006]
本稿では,FKT(Fast Kernel Transform:高速カーネル変換)を提案する。
FKT はガウス、マテルン、ラショナル四次共分散関数や物理的に動機付けられたグリーン関数など、幅広い種類のカーネルに容易に適用できる。
本稿では、時間と精度のベンチマークを提供することによりFKTの有効性と汎用性を説明し、それを近隣埋め込み(t-SNE)とガウス過程を大規模実世界のデータセットに拡張する。
論文 参考訳(メタデータ) (2021-06-08T16:15:47Z) - Isolation Distributional Kernel: A New Tool for Point & Group Anomaly
Detection [76.1522587605852]
分離分散カーネル(IDK)は2つの分布の類似性を測定する新しい方法である。
我々は、カーネルベースの異常検出のための新しいツールとして、IDKの有効性と効率を示す。
論文 参考訳(メタデータ) (2020-09-24T12:25:43Z) - Fourier Sparse Leverage Scores and Approximate Kernel Learning [29.104055676527913]
我々はガウス測度とラプラス測度の両方の下でフーリエ関数のレバレッジスコアに新しい明示的な上限を証明した。
私たちの限界は、機械学習における2つの重要な応用によって動機付けられています。
論文 参考訳(メタデータ) (2020-06-12T17:25:39Z) - SimpleMKKM: Simple Multiple Kernel K-means [49.500663154085586]
単純なマルチカーネルk-means(SimpleMKKM)と呼ばれる,単純で効果的なマルチカーネルクラスタリングアルゴリズムを提案する。
我々の基準は、カーネル係数とクラスタリング分割行列における難解な最小化最大化問題によって与えられる。
クラスタリング一般化誤差の観点から,SimpleMKKMの性能を理論的に解析する。
論文 参考訳(メタデータ) (2020-05-11T10:06:40Z) - Kernel-Based Reinforcement Learning: A Finite-Time Analysis [53.47210316424326]
モデルに基づく楽観的アルゴリズムであるKernel-UCBVIを導入する。
スパース報酬を伴う連続MDPにおける我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2020-04-12T12:23:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。