Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained
EfficientNet-Based Convolutional Network
- URL: http://arxiv.org/abs/2110.01606v1
- Date: Fri, 1 Oct 2021 22:09:59 GMT
- Title: Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained
EfficientNet-Based Convolutional Network
- Authors: Daniel G.P. Petrini, Carlos Shimizu, Rosimeire A. Roela, Gabriel V.
Valente, Maria A.A.K. Folgueira, Hae Yong Kim
- Abstract summary: Deep convolutional neural networks are described to diagnose breast cancer in mammograms with similar or even superior performance to that of human experts.
We present one of the best techniques that consists of two transfer learnings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some recent studies have described deep convolutional neural networks to
diagnose breast cancer in mammograms with similar or even superior performance
to that of human experts. Shen et al. (2019) present one of the best techniques
that consists of two transfer learnings. The first uses a model trained on
natural images to create a "patch classifier" that categorizes small subimages.
The second uses the patch classifier to scan the whole mammogram and create the
"single-view whole-image classifier". We propose to make a third transfer
learning to obtain a "two-view classifier" to use the two mammographic views:
bilateral craniocaudal and mediolateral oblique. We use modern EfficientNet as
the basis of our model. We "end-to-end" train the entire system using CBIS-DDSM
dataset. To ensure statistical robustness, we test our system twice using: (a)
5-fold cross validation; and (b) the original training/test division of the
dataset. Our technique reached an AUC of 0.934 using 5-fold cross validation
(sensitivity and specificity are 85.13% at the equal error rate of ROC). Using
the original dataset division, our technique achieved an AUC of 0.8483, the
largest AUC reported for this problem, as far as we know.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - MLC at HECKTOR 2022: The Effect and Importance of Training Data when
Analyzing Cases of Head and Neck Tumors using Machine Learning [0.9166327220922845]
This paper presents the work done by team MLC for the 2022 version of the HECKTOR grand challenge held at MICCAI 2022.
Analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis.
arXiv Detail & Related papers (2022-11-30T09:04:27Z) - Histopathological Imaging Classification of Breast Tissue for Cancer
Diagnosis Support Using Deep Learning Models [0.0]
Hematoxylin and Eosin are considered the gold standard for cancer diagnoses.
Based on the idea of dividing the pathologic image (WSI) into multiple patches, we used the window [512,512] sliding from left to right and sliding from top to bottom, each sliding step overlapping by 50% to augmented data on a dataset of 400 images.
The EffficientNet model is a recently developed model that uniformly scales the width, depth, and resolution of the network with a set of fixed scaling factors that are well suited for training images with high resolution.
arXiv Detail & Related papers (2022-07-03T13:56:44Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.