論文の概要: An Integrated System for Mobile Image-Based Dietary Assessment
- arxiv url: http://arxiv.org/abs/2110.01754v1
- Date: Tue, 5 Oct 2021 00:04:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 14:04:00.101181
- Title: An Integrated System for Mobile Image-Based Dietary Assessment
- Title(参考訳): モバイル画像に基づく食事評価統合システム
- Authors: Zeman Shao, Yue Han, Jiangpeng He, Runyu Mao, Janine Wright, Deborah
Kerr, Carol Boushey, Fengqing Zhu
- Abstract要約: 本稿では,食事摂取状況の把握と分析を行うモバイル型イメージベース食事アセスメントシステムの設計と開発について述べる。
本システムは,自然条件下での高品質な食品画像の収集が可能であり,新しい計算手法を開発するための基盤となるアノテーションを提供する。
- 参考スコア(独自算出の注目度): 7.352044746821543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate assessment of dietary intake requires improved tools to overcome
limitations of current methods including user burden and measurement error.
Emerging technologies such as image-based approaches using advanced machine
learning techniques coupled with widely available mobile devices present new
opportunities to improve the accuracy of dietary assessment that is
cost-effective, convenient and timely. However, the quality and quantity of
datasets are essential for achieving good performance for automated image
analysis. Building a large image dataset with high quality groundtruth
annotation is a challenging problem, especially for food images as the
associated nutrition information needs to be provided or verified by trained
dietitians with domain knowledge. In this paper, we present the design and
development of a mobile, image-based dietary assessment system to capture and
analyze dietary intake, which has been deployed in both controlled-feeding and
community-dwelling dietary studies. Our system is capable of collecting high
quality food images in naturalistic settings and provides groundtruth
annotations for developing new computational approaches.
- Abstract(参考訳): 食事摂取の正確な評価には、ユーザの負担や測定誤差を含む現在の方法の限界を克服するための改善ツールが必要である。
高度な機械学習技術と広く利用可能なモバイルデバイスを組み合わせた画像ベースアプローチのような新興技術は、コスト効率、利便性、タイムリーな食事評価の精度を向上させる新たな機会を提供する。
しかし,画像の自動解析には,データセットの品質と量が不可欠である。
栄養情報の提供やドメイン知識を持つ訓練された栄養士による検証が必要となるため、特に食品画像において、高品質な地中アノテーションを用いた大規模画像データセットの構築は難しい課題である。
そこで,本稿では,本研究では,移動型イメージベースの食事アセスメントシステムの設計と開発について紹介する。
本システムでは,高品質な食品イメージを自然条件下で収集し,新たな計算手法開発のための基礎的アノテーションを提供する。
関連論文リスト
- Shape-Preserving Generation of Food Images for Automatic Dietary Assessment [1.602820210496921]
条件付き食品画像生成のための簡単なGANベースのニューラルネットワークアーキテクチャを提案する。
生成された画像中の食品や容器の形状は、参照入力画像の形状とよく似ている。
論文 参考訳(メタデータ) (2024-08-23T20:18:51Z) - Computer Vision in the Food Industry: Accurate, Real-time, and Automatic Food Recognition with Pretrained MobileNetV2 [1.6590638305972631]
本研究は,16643画像からなる公共食品11データセット上での食品認識において,効率的かつ高速な事前訓練されたMobileNetV2モデルを用いる。
また、データセット理解、転送学習、データ拡張、正規化、動的学習率、ハイパーパラメータチューニング、さまざまなサイズの画像の考慮など、さまざまな技術を活用して、パフォーマンスと堅牢性を高めている。
より単純な構造を持ち、深層学習領域の深部・密度モデルと比較して訓練可能なパラメータが少ない光モデルを採用するが、短時間で計算可能な精度を達成した。
論文 参考訳(メタデータ) (2024-05-19T17:20:20Z) - NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
自己申告法はしばしば不正確であり、重大な偏見に悩まされる。
近年、食品画像から栄養情報を予測するためにコンピュータビジョン予測システムを用いた研究が進められている。
本稿では,様々なニューラルネットワークアーキテクチャを活用することにより,食事摂取量推定の有効性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-05-13T14:56:55Z) - How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
現在の画像に基づく食品部分推定アルゴリズムは、ユーザが食事の画像を1、2回取ることを前提としている。
本稿では,静止型ユーザ向けカメラを用いて,機器上の食品の追跡を行う革新的なソリューションを提案する。
本システムは,スープやシチューなどの液状固形不均一混合物の栄養含量の推定に信頼性が高い。
論文 参考訳(メタデータ) (2024-05-12T00:16:02Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
食事の正確な摂取推定は、健康的な食事を支援するための政策やプログラムを伝える上で重要である。
最近の研究は、コンピュータービジョンと機械学習を使用して、食物画像から食事摂取を自動的に推定することに焦点を当てている。
我々は,84,984個の合成2D食品画像と関連する食事情報を用いた最初の大規模データセットであるNutritionVerse-Synthを紹介した。
また、リアルなイメージデータセットであるNutritionVerse-Realを収集し、リアル性を評価するために、251の料理の889のイメージを含む。
論文 参考訳(メタデータ) (2023-09-14T13:29:41Z) - Diffusion Model with Clustering-based Conditioning for Food Image
Generation [22.154182296023404]
深層学習に基づく手法は、食品分類、セグメンテーション、部分サイズ推定などの画像解析に一般的に用いられている。
潜在的な解決策の1つは、データ拡張に合成食品画像を使用することである。
本稿では,高品質で代表的な食品画像を生成するための効果的なクラスタリングベースのトレーニングフレームワークであるClusDiffを提案する。
論文 参考訳(メタデータ) (2023-09-01T01:40:39Z) - Food Image Classification and Segmentation with Attention-based Multiple
Instance Learning [51.279800092581844]
本稿では,食品画像分類とセマンティックセグメンテーションモデルを訓練するための弱教師付き方法論を提案する。
提案手法は、注意に基づくメカニズムと組み合わせて、複数のインスタンス学習アプローチに基づいている。
提案手法の有効性を検証するため,FoodSeg103データセット内の2つのメタクラスについて実験を行った。
論文 参考訳(メタデータ) (2023-08-22T13:59:47Z) - Towards the Creation of a Nutrition and Food Group Based Image Database [58.429385707376554]
栄養・食品群に基づく画像データベースを構築するための枠組みを提案する。
米国農務省食品栄養データベース(FNDDS)における食品群に基づく食品コードリンクプロトコルを設計する。
提案手法は16,114個の食品データセットを含む栄養・食品群に基づく画像データベースを構築するために用いられる。
論文 参考訳(メタデータ) (2022-06-05T02:41:44Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
本総説では, 食品画像分析, 容積推定, 栄養素抽出の3段階からなる, 統合型ビジョンベース食事評価(VBDA)の枠組みを概説する。
深層学習により、VBDAは徐々にエンドツーエンドの実装へと移行し、単一のネットワークに食品画像を適用して栄養を直接見積もる。
論文 参考訳(メタデータ) (2021-08-06T05:46:01Z) - An Artificial Intelligence-Based System to Assess Nutrient Intake for
Hospitalised Patients [4.048427587958764]
入院患者の栄養摂取の定期的なモニタリングは、疾患関連栄養失調のリスクを低減する上で重要な役割を担っている。
本稿では,栄養摂取量を正確に推定する人工知能(AI)に基づく新しいシステムを提案する。
論文 参考訳(メタデータ) (2020-03-18T15:28:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。