STEMO: Early Spatio-temporal Forecasting with Multi-Objective Reinforcement Learning
- URL: http://arxiv.org/abs/2406.04035v3
- Date: Tue, 18 Jun 2024 09:16:33 GMT
- Title: STEMO: Early Spatio-temporal Forecasting with Multi-Objective Reinforcement Learning
- Authors: Wei Shao, Yufan Kang, Ziyan Peng, Xiao Xiao, Lei Wang, Yuhui Yang, Flora D Salim,
- Abstract summary: We propose an early-temporal forecasting model based on Multi-Objective reinforcement learning.
Our method demonstrates superior performance on three large-scale real-world datasets.
- Score: 11.324029387605888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accuracy and timeliness are indeed often conflicting goals in prediction tasks. Premature predictions may yield a higher rate of false alarms, whereas delaying predictions to gather more information can render them too late to be useful. In applications such as wildfires, crimes, and traffic jams, timely forecasting are vital for safeguarding human life and property. Consequently, finding a balance between accuracy and timeliness is crucial. In this paper, we propose an early spatio-temporal forecasting model based on Multi-Objective reinforcement learning that can either implement an optimal policy given a preference or infer the preference based on a small number of samples. The model addresses two primary challenges: 1) enhancing the accuracy of early forecasting and 2) providing the optimal policy for determining the most suitable prediction time for each area. Our method demonstrates superior performance on three large-scale real-world datasets, surpassing existing methods in early spatio-temporal forecasting tasks.
Related papers
- Deconfounding Time Series Forecasting [1.5967186772129907]
Time series forecasting is a critical task in various domains, where accurate predictions can drive informed decision-making.
Traditional forecasting methods often rely on current observations of variables to predict future outcomes.
We propose an enhanced forecasting approach that incorporates representations of latent confounders derived from historical data.
arXiv Detail & Related papers (2024-10-27T12:45:42Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - Improving Event Time Prediction by Learning to Partition the Event Time
Space [13.5391816206237]
Recently developed survival analysis methods improve upon existing approaches by predicting the probability of event occurrence in each of a number pre-specified (discrete) time intervals.
In clinical settings with limited available data, it is often preferable to judiciously partition the event time space into a limited number of intervals well suited to the prediction task at hand.
We show that in two simulated datasets, we are able to recover intervals that match the underlying generative model.
We then demonstrate improved prediction performance on three real-world observational datasets, including a large, newly harmonized stroke risk prediction dataset.
arXiv Detail & Related papers (2023-10-24T14:11:40Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Multi-axis Attentive Prediction for Sparse EventData: An Application to
Crime Prediction [16.654369376687296]
We present a purely attentional approach to extract both short-term dynamics and long-term semantics of event propagation through two observation angles.
The proposed contrastive learning objective significantly enhances the MAPSED's ability to capture semantics and dynamics of events.
arXiv Detail & Related papers (2021-10-05T02:38:46Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - All-Clear Flare Prediction Using Interval-based Time Series Classifiers [0.21028463367241026]
An all-clear flare prediction is a type of solar flare forecasting that puts more emphasis on predicting non-flaring instances.
Finding the right balance between avoiding false negatives (misses) and reducing the false positives (false alarms) is often challenging.
arXiv Detail & Related papers (2021-05-03T22:40:05Z) - Improving Event Duration Prediction via Time-aware Pre-training [90.74988936678723]
We introduce two effective models for duration prediction.
One model predicts the range/unit where the duration value falls in (R-pred); and the other predicts the exact duration value E-pred.
Our best model -- E-pred, substantially outperforms previous work, and captures duration information more accurately than R-pred.
arXiv Detail & Related papers (2020-11-05T01:52:11Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
We focus on a tensor-based prediction and propose several practical techniques to improve prediction.
For long-term prediction specifically, we propose the "Tensor Decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model.
For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplifying and ensure accuracy.
arXiv Detail & Related papers (2020-04-23T08:30:00Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.