論文の概要: Spatial Context Awareness for Unsupervised Change Detection in Optical
Satellite Images
- arxiv url: http://arxiv.org/abs/2110.02068v1
- Date: Tue, 5 Oct 2021 14:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 18:35:12.908322
- Title: Spatial Context Awareness for Unsupervised Change Detection in Optical
Satellite Images
- Title(参考訳): 光衛星画像における教師なし変化検出のための空間環境認識
- Authors: Lukas Kondmann, Aysim Toker, Sudipan Saha, Bernhard Sch\"olkopf, Laura
Leal-Taix\'e, Xiao Xiang Zhu
- Abstract要約: SiROC(Sibling Regression for Optical Change Detection)について紹介する。
SiROCは、中高解像度の光学衛星画像における変化検出の教師なし手法である。
中解像度のSentinel-2と高解像度のPlanetscope画像による変化検出の競合性能を実現する。
- 参考スコア(独自算出の注目度): 11.018182254899859
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting changes on the ground in multitemporal Earth observation data is
one of the key problems in remote sensing. In this paper, we introduce Sibling
Regression for Optical Change detection (SiROC), an unsupervised method for
change detection in optical satellite images with medium and high resolution.
SiROC is a spatial context-based method that models a pixel as a linear
combination of its distant neighbors. It uses this model to analyze differences
in the pixel and its spatial context-based predictions in subsequent time
periods for change detection. We combine this spatial context-based change
detection with ensembling over mutually exclusive neighborhoods and
transitioning from pixel to object-level changes with morphological operations.
SiROC achieves competitive performance for change detection with
medium-resolution Sentinel-2 and high-resolution Planetscope imagery on four
datasets. Besides accurate predictions without the need for training, SiROC
also provides a well-calibrated uncertainty of its predictions. This makes the
method especially useful in conjunction with deep-learning based methods for
applications such as pseudo-labeling.
- Abstract(参考訳): 多時期地球観測データにおける地盤変化の検出はリモートセンシングの重要な問題の一つである。
本稿では,中高分解能の光学衛星画像における変化検出のための教師なし手法であるsiroc(sirbling regression for optical change detection)を提案する。
SiROC は空間的文脈に基づく手法であり、ピクセルをその近傍の線形結合としてモデル化する。
このモデルを用いて、後続の時間における画素とその空間的文脈に基づく予測の違いを分析し、変化検出を行う。
この空間的文脈に基づく変化検出と、相互排他的近傍でのアンサンブルとを組み合わせて、形態的操作で画素からオブジェクトレベルの変化に遷移する。
SiROCは4つのデータセット上の中分解能Sentinel-2と高分解能Planetscope画像による変化検出の競合性能を実現する。
トレーニング不要な正確な予測に加えて、sirocは予測の正確な不確実性も提供する。
この手法は、擬似ラベル付けなどのアプリケーションのためのディープラーニングベースの手法と組み合わせて特に有用である。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM) [0.0]
変化検出はリモートセンシングにおいて重要な課題であり、環境変化、都市の成長、災害影響のモニタリングを可能にする。
近年の機械学習、特に拡散モデルのような生成モデルの発展は、変化検出精度を高める新たな機会を提供する。
本稿では,安定拡散モデルの強度と構造類似度指数(SSIM)を組み合わせ,頑健で解釈可能な変化マップを作成する新しい変化検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-20T07:54:08Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - Multitemporal SAR images change detection and visualization using
RABASAR and simplified GLR [5.601249128545687]
対応する時間画素が同一のルック数(ENL)を持つことを前提として、簡易な一般化可能性比(S_GLR$)法を提案する。
本研究では,RABASARを用いたマルチテンポラリSAR画像デノナイズ法によって得られたデノナイズドデータを用いて,この類似性試験手法を適用し,変化領域の計算に成功した。
また、スペクトルクラスタリングに基づく新しい変化度指数法と改良されたスペクトルクラスタリングに基づく変化分類法を開発した。
論文 参考訳(メタデータ) (2023-07-15T22:11:34Z) - Exploring Invariant Representation for Visible-Infrared Person
Re-Identification [77.06940947765406]
異なるスペクトルを横断する歩行者にアイデンティティを関連付けることを目的とした、クロススペクトルの人物再識別は、モダリティの相違の主な課題に直面している。
本稿では、ロバスト機能マイニングネットワーク(RFM)と呼ばれるエンドツーエンドのハイブリッド学習フレームワークにおいて、画像レベルと特徴レベルの両方の問題に対処する。
RegDBとSYSU-MM01という2つの標準的なクロススペクトル人物識別データセットの実験結果により,最先端の性能が示された。
論文 参考訳(メタデータ) (2023-02-02T05:24:50Z) - Scene Change Detection Using Multiscale Cascade Residual Convolutional
Neural Networks [0.0]
シーン変化検出は、デジタル画像の画素を前景と背景領域に分割する処理問題である。
本研究では,Residual Processing Moduleを統合した畳み込みニューラルネットワークを用いた新しいマルチスケールResidual Processing Moduleを提案する。
2つの異なるデータセットで実施された実験は、提案手法の全体的な有効性をサポートし、それぞれが$boldsymbol0.9622$と$boldsymbol0.9664$ over Change Detection 2014とPetrobrasROUTESデータセットの全体的な有効性を達成する。
論文 参考訳(メタデータ) (2022-12-20T16:48:51Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
本稿では,変化検出タスク,すなわちDual-UNetのための新しいSiameseニューラルネットワークを提案する。
従来のバイテンポラル画像の符号化とは対照的に,画素の空間的差分関係に着目したエンコーダ差分アテンションモジュールを設計する。
実験により、提案手法は、一般的な季節変化検出データセットにおいて、常に最も高度な手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-12T14:24:09Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z) - Robust Unsupervised Small Area Change Detection from SAR Imagery Using
Deep Learning [23.203687716051697]
合成開口レーダ(SAR)画像から小さな領域変化検出のための頑健な教師なし手法を提案する。
差分画像(DI)を生成するマルチスケールスーパーピクセル再構成法を開発した。
二段階中心拘束型ファジィc平均クラスタリングアルゴリズムを提案し、DIの画素を変化・変化・中間クラスに分割する。
論文 参考訳(メタデータ) (2020-11-22T12:50:08Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。