Neural Network Based Epileptic EEG Detection and Classification
- URL: http://arxiv.org/abs/2111.03268v1
- Date: Fri, 5 Nov 2021 05:25:40 GMT
- Title: Neural Network Based Epileptic EEG Detection and Classification
- Authors: Shivam Gupta, Jyoti Meena and O.P Gupta
- Abstract summary: A model has been proposed that preserves the true nature of an EEG signal in form of textual one-dimensional vector.
The proposed model achieves a state of art performance for Bonn University dataset giving an average sensitivity, specificity of 81% and 81.4% respectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Timely diagnosis is important for saving the life of epileptic patients. In
past few years, a lot of treatments are available for epilepsy. These
treatments require use of anti-seizure drugs but are not effective in
controlling frequency of seizure. There is need of removal of an affected
region using surgery. Electroencephalogram (EEG) is a widely used technique for
monitoring the brain activity and widely popular for seizure region detection.
It is used before surgery for locating affected region. This manual process,
using EEG graphs, is time consuming and requires deep expertise. In the present
paper, a model has been proposed that preserves the true nature of an EEG
signal in form of textual one-dimensional vector. The proposed model achieves a
state of art performance for Bonn University dataset giving an average
sensitivity, specificity of 81% and 81.4% respectively for classification of
EEG data among all five classes. Also for binary classification achieving
99.9%, 99.5% score value for specificity and sensitivity instead of 2D models
used by other researchers. Thus, developed system will significantly help
neurosurgeons in the increase of their performance.
Related papers
- Epilepsy Seizure Detection and Prediction using an Approximate Spiking
Convolutional Transformer [12.151626573534001]
This paper presents a neuromorphic Spiking Convolutional Transformer, named Spiking Conformer, to detect and predict epileptic seizure segments.
We report evaluation results from the Spiking Conformer model using the Boston Children's Hospital-MIT (CHB-MIT) EEG dataset.
Using raw EEG data as input, the proposed Spiking Conformer achieved an average sensitivity rate of 94.9% and a specificity rate of 99.3% for the seizure detection task.
arXiv Detail & Related papers (2024-01-21T19:23:56Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - Wavelet-Based Multi-Class Seizure Type Classification System [2.1915057426589746]
This paper presents a novel technique that involves extraction of specific features from EEG signals using Dual-tree Complex Wavelet Transform (DTCWT) and classifying them.
Our proposed technique achieved the best results of weighted F1-score of 99.1% and 74.7% for seizure-wise and patient-wise classification respectively.
arXiv Detail & Related papers (2022-02-19T23:58:01Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier,
Autoencoders and Fuzzy Entropies [9.861415775909663]
The electroencephalogram (EEG) signals are widely used for epileptic seizures detection.
In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques are introduced.
arXiv Detail & Related papers (2021-09-06T11:02:25Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
We propose an end-to-end deep learning solution using a convolutional neural network (CNN)
Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively.
arXiv Detail & Related papers (2021-08-17T05:49:43Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.