論文の概要: Task Affinity with Maximum Bipartite Matching in Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2110.02399v1
- Date: Tue, 5 Oct 2021 23:15:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2021-10-08 08:50:00.569430
- Title: Task Affinity with Maximum Bipartite Matching in Few-Shot Learning
- Title(参考訳): Few-Shot Learningにおける最大二部マッチングによるタスク親和性
- Authors: Cat P. Le, Juncheng Dong, Mohammadreza Soltani, Vahid Tarokh
- Abstract要約: 本稿では,1つのタスクの知識を活用して,別のタスクを学習する複雑性を表現するための非対称親和性スコアを提案する。
特に、このスコアを用いて、テストデータに関連するトレーニングデータラベルを見つけ、発見した関連するデータを活用して、いくつかのショットモデルをエピソード的に微調整する。
- 参考スコア(独自算出の注目度): 28.5184196829547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an asymmetric affinity score for representing the complexity of
utilizing the knowledge of one task for learning another one. Our method is
based on the maximum bipartite matching algorithm and utilizes the Fisher
Information matrix. We provide theoretical analyses demonstrating that the
proposed score is mathematically well-defined, and subsequently use the
affinity score to propose a novel algorithm for the few-shot learning problem.
In particular, using this score, we find relevant training data labels to the
test data and leverage the discovered relevant data for episodically
fine-tuning a few-shot model. Results on various few-shot benchmark datasets
demonstrate the efficacy of the proposed approach by improving the
classification accuracy over the state-of-the-art methods even when using
smaller models.
- Abstract(参考訳): 本稿では,あるタスクの知識を他のタスクの学習に利用する複雑さを表現するための非対称親和性スコアを提案する。
本手法は最大二成分マッチングアルゴリズムに基づき,fisher information matrixを用いた。
提案するスコアが数学的によく定義されていることを実証する理論的解析を行い,その後,親和性スコアを用いて,限定学習問題に対する新しいアルゴリズムを提案する。
特に、このスコアを用いて、テストデータに関連するトレーニングデータラベルを見つけ、検出された関連するデータを利用して、数発のモデルをエピソドミックに微調整する。
提案手法の有効性は, より小さなモデルを用いた場合であっても, 最先端手法の分類精度を向上させることで検証した。
関連論文リスト
- Recommendations from Sparse Comparison Data: Provably Fast Convergence for Nonconvex Matrix Factorization [12.006706388840934]
本稿では,個別に評価するのではなく,各項目のペアを比較してフィードバックを提供するリコメンデータシステムにおいて,新たな学習問題を理論的に分析する。
論文 参考訳(メタデータ) (2025-02-27T12:17:34Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
コアセット選択とアクティブラーニングの両方に対処するための理論的に最適な解を提案する。
提案手法であるCOPSは,サブサンプルデータに基づいてトレーニングされたモデルの損失を最小限に抑えるために設計されている。
論文 参考訳(メタデータ) (2023-09-05T14:06:33Z) - A Critical Re-evaluation of Benchmark Datasets for (Deep) Learning-Based
Matching Algorithms [11.264467955516706]
確立された13のデータセットの難易度と適切性を評価するための4つの手法を提案する。
一般的なデータセットの多くは、かなり簡単な分類タスクを処理している。
ベンチマークデータセットを得るための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-03T07:54:54Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
アクティブラーニングフレームワークは、最も有益なデータポイントのラベル付けを積極的に要求することで、データアノテーションのコストを削減することを目的としている。
提案手法には、不確実性に基づく手法、幾何学的手法、不確実性に基づく手法と幾何学的手法の暗黙の組み合わせなどがある。
本稿では, サンプル選択戦略における効率的な探索・探索トレードオフを実現するために, 不確実性に基づくフレームワークと幾何学的フレームワークの両方の最近の進歩を革新的に統合する。
本フレームワークは,(1)正確な後続推定,(2)計算オーバーヘッドと高い精度のトレードオフの2つの利点を提供する。
論文 参考訳(メタデータ) (2022-10-11T20:20:20Z) - Improved Robust Algorithms for Learning with Discriminative Feature
Feedback [21.58493386054356]
識別的特徴フィードバック(英: Discriminative Feature Feedback)は、人間の教師によって提供される特徴説明に基づく対話型学習のためのプロトコルである。
我々は、識別的特徴フィードバックモデルのための、新しい堅牢な対話型学習アルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-09-08T12:11:12Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Towards Deterministic Diverse Subset Sampling [14.236193187116049]
本稿では,k-DPPのグリーディ決定論的適応について論じる。
画像検索作業におけるモデルの有用性を示す。
論文 参考訳(メタデータ) (2021-05-28T16:05:58Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
本稿では,周辺情報をグラフ誘導ガウス分布でエンコードし,その2種類の情報をグラフ駆動生成モデルと統合することを提案する。
この近似の下では、トレーニング対象がシングルトンまたはペアワイズ文書のみを含む用語に分解可能であることを証明し、モデルが非関連文書と同じくらい効率的にトレーニングできることを示す。
論文 参考訳(メタデータ) (2021-05-27T11:29:03Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - SIMPLE: SIngle-network with Mimicking and Point Learning for Bottom-up
Human Pose Estimation [81.03485688525133]
Single-network with Mimicking and Point Learning for Bottom-up Human Pose Estimation (SIMPLE) を提案する。
具体的には、トレーニングプロセスにおいて、SIMPLEが高性能なトップダウンパイプラインからのポーズ知識を模倣できるようにする。
さらに、SIMPLEは人間検出とポーズ推定を統一的なポイントラーニングフレームワークとして定式化し、単一ネットワークで相互に補完する。
論文 参考訳(メタデータ) (2021-04-06T13:12:51Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。