論文の概要: A Quantum Generative Adversarial Network for distributions
- arxiv url: http://arxiv.org/abs/2110.02742v1
- Date: Mon, 4 Oct 2021 20:41:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-07 14:15:01.583649
- Title: A Quantum Generative Adversarial Network for distributions
- Title(参考訳): 分散のための量子生成逆ネットワーク
- Authors: Amine Assouel, Antoine Jacquier, Alexei Kondratyev
- Abstract要約: 我々は、完全に接続された量子生成適応ネットワークを開発し、特にボラティリティモデリングに焦点を当てた数学的ファイナンスにどのように適用できるかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks are becoming a fundamental tool in Machine
Learning, in particular in the context of improving the stability of deep
neural networks. At the same time, recent advances in Quantum Computing have
shown that, despite the absence of a fault-tolerant quantum computer so far,
quantum techniques are providing exponential advantage over their classical
counterparts. We develop a fully connected Quantum Generative Adversarial
network and show how it can be applied in Mathematical Finance, with a
particular focus on volatility modelling.
- Abstract(参考訳): 生成型adversarial networkは、特にディープニューラルネットワークの安定性向上のコンテキストにおいて、機械学習の基本的なツールになりつつある。
同時に、量子コンピューティングの最近の進歩は、フォールトトレラントな量子コンピュータが存在しないにもかかわらず、量子技術は古典的手法よりも指数関数的に有利であることを示している。
我々は、完全連結量子生成逆ネットワークを開発し、それを数学的ファイナンスに適用する方法を示し、特にボラティリティモデリングに焦点をあてる。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - A General Approach to Dropout in Quantum Neural Networks [1.5771347525430772]
オーバーフィッティング(Overfitting)とは、与えられたモデルがトレーニングデータを過度に学習した場合に発生する現象である。
量子ニューラルネットワークが学習モデルとして登場したことで、オーバーフィッティングが問題になるかもしれない。
論文 参考訳(メタデータ) (2023-10-06T09:39:30Z) - Mutual Information Maximizing Quantum Generative Adversarial Network and
Its Applications in Finance [1.9448402576196024]
量子機械学習は、さまざまな領域にわたる古典的な機械学習よりも大きな量子的優位性を提供する。
生成的敵ネットワークは 様々な分野で 有用性があることが認識されている
我々は,MINE(Mutual Information Neural Estor)を量子生成逆数ネットワークの枠組みに取り入れたInfoQGANという新しいアプローチを導入する。
論文 参考訳(メタデータ) (2023-09-04T05:18:37Z) - An Invitation to Distributed Quantum Neural Networks [0.0]
分散量子ニューラルネットワークにおける技術の現状を概観する。
量子データセットの分布は、量子モデルの分布よりも古典的な分布と類似性があることが分かる。
論文 参考訳(メタデータ) (2022-11-14T00:27:01Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - The power of quantum neural networks [3.327474729829121]
しかし、短期的には、量子機械学習の利点はあまり明確ではない。
我々は、情報幾何学のツールを使用して、量子モデルと古典モデルの表現可能性の概念を定義します。
量子ニューラルネットワークは、同等の古典的ニューラルネットワークよりもはるかに優れた次元を達成可能であることを示す。
論文 参考訳(メタデータ) (2020-10-30T18:13:32Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。