Building a large-scale quantum computer with continuous-variable optical
technologies
- URL: http://arxiv.org/abs/2110.03247v2
- Date: Sat, 12 Feb 2022 06:57:31 GMT
- Title: Building a large-scale quantum computer with continuous-variable optical
technologies
- Authors: Kosuke Fukui and Shuntaro Takeda
- Abstract summary: This review introduces several topics of recent experimental and theoretical progress in the optical continuous-variable quantum computation.
We focus on scaling-up technologies enabled by time multiplexing, broadening bandwidth, and integrated optics, as well as hardware-efficient and robust bosonic quantum error correction schemes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Realizing a large-scale quantum computer requires hardware platforms that can
simultaneously achieve universality, scalability, and fault tolerance. As a
viable pathway to meeting these requirements, quantum computation based on
continuous-variable optical systems has recently gained more attention due to
its unique advantages and approaches. This review introduces several topics of
recent experimental and theoretical progress in the optical continuous-variable
quantum computation that we believe are promising. In particular, we focus on
scaling-up technologies enabled by time multiplexing, bandwidth broadening, and
integrated optics, as well as hardware-efficient and robust bosonic quantum
error correction schemes.
Related papers
- How to Build a Quantum Supercomputer: Scaling Challenges and Opportunities [3.864855748348313]
Small-scale demonstrations have become possible for quantum algorithmic primitives on hundreds of physical qubits.
Despite significant progress and excitement, the path toward a full-stack scalable technology is largely unknown.
We show how the road to scaling could be paved by adopting existing semiconductor technology to build much higher-quality qubits.
arXiv Detail & Related papers (2024-11-15T18:22:46Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum consistent neural/tensor networks for photonic circuits with strongly/weakly entangled states [0.0]
We propose an approach to approximate the exact unitary evolution of closed entangled systems in a precise, efficient and quantum consistent manner.
By training the networks with a reasonably small number of examples of quantum dynamics, we enable efficient parameter estimation in larger Hilbert spaces.
arXiv Detail & Related papers (2024-06-03T09:51:25Z) - End-to-End Quantum Vision Transformer: Towards Practical Quantum Speedup
in Large-Scale Models [20.72342380227143]
This paper introduces an end-to-end Quantum Vision Transformer (QViT), which incorporates an innovative quantum residual connection technique.
Our thorough analysis of the QViT reveals a theoretically exponential complexity and empirically speedup, showcasing the model's efficiency and potential in quantum computing applications.
arXiv Detail & Related papers (2024-02-29T08:12:02Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation [5.381727213688375]
We are still a long way from reaching the maturity of a full-fledged quantum computer.
An outstanding challenge is to come up with an application that can reliably carry out a nontrivial task.
Several near-term quantum computing techniques have been proposed to characterize and mitigate errors.
arXiv Detail & Related papers (2022-11-16T07:53:15Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Integrated micro-comb sources for quantum optical applications [0.0]
We review progress on the realization of energy-time entangled optical frequency combs.
We discuss how photonic integration and the use of fiber-optic telecommunications components can enable quantum state control.
arXiv Detail & Related papers (2020-01-08T03:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.