論文の概要: Multi-tasking Dialogue Comprehension with Discourse Parsing
- arxiv url: http://arxiv.org/abs/2110.03269v1
- Date: Thu, 7 Oct 2021 08:51:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 15:48:02.942861
- Title: Multi-tasking Dialogue Comprehension with Discourse Parsing
- Title(参考訳): 談話解析を用いたマルチタスク対話理解
- Authors: Yuchen He, Zhuosheng Zhang, Hai Zhao
- Abstract要約: マルチパーティ対話型MRCタスクにおいて,QAと談話解析(DP)を併用する最初のマルチタスクモデルを提案する。
以上の結果から,相補的なタスクによるトレーニングは,QAタスクだけでなく,DPタスク自体にも効果があることが示唆された。
- 参考スコア(独自算出の注目度): 43.352833140317486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-party dialogue machine reading comprehension (MRC) raises an even more
challenging understanding goal on dialogue with more than two involved
speakers, compared with the traditional plain passage style MRC. To accurately
perform the question-answering (QA) task according to such multi-party
dialogue, models have to handle fundamentally different discourse relationships
from common non-dialogue plain text, where discourse relations are supposed to
connect two far apart utterances in a linguistics-motivated way.To further
explore the role of such unusual discourse structure on the correlated QA task
in terms of MRC, we propose the first multi-task model for jointly performing
QA and discourse parsing (DP) on the multi-party dialogue MRC task. Our
proposed model is evaluated on the latest benchmark Molweni, whose results
indicate that training with complementary tasks indeed benefits not only QA
task, but also DP task itself. We further find that the joint model is
distinctly stronger when handling longer dialogues which again verifies the
necessity of DP in the related MRC.
- Abstract(参考訳): MRC(Multi-party dialogue machine reading comprehension)は、従来のプレーンパススタイルのMRCに比べて、2人以上の話者との対話においてさらに困難な理解目標を提起する。
To accurately perform the question-answering (QA) task according to such multi-party dialogue, models have to handle fundamentally different discourse relationships from common non-dialogue plain text, where discourse relations are supposed to connect two far apart utterances in a linguistics-motivated way.To further explore the role of such unusual discourse structure on the correlated QA task in terms of MRC, we propose the first multi-task model for jointly performing QA and discourse parsing (DP) on the multi-party dialogue MRC task.
提案手法は,最新のベンチマーク molweni を用いて評価され,その評価結果から qa タスクだけでなく dp タスク自体にも有益であることが示唆された。
さらに,MRCにおけるDPの必要性を検証し,より長い対話を扱う場合,関節モデルは明らかに強くなることがわかった。
関連論文リスト
- Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Coreference-aware Double-channel Attention Network for Multi-party
Dialogue Reading Comprehension [7.353227696624305]
MDRC(Multi-party Dialogue Reading)に挑戦する
MDRCは、複数のインターロケータ間の対話に基づく抽出読解タスクの略である。
推論能力を高めるためのコア推論対応アテンションモデリング手法を提案する。
論文 参考訳(メタデータ) (2023-05-15T05:01:29Z) - ChatGPT Evaluation on Sentence Level Relations: A Focus on Temporal,
Causal, and Discourse Relations [52.26802326949116]
対話型大規模言語モデルChatGPTの性能を,文間関係に基づいて定量的に評価する。
ChatGPTは因果関係の検出と推論において極めて優れた能力を示す。
既存の明示的な談話接続物との談話関係の大多数を特定できるが、暗黙的な談話関係は依然として恐ろしい課題である。
論文 参考訳(メタデータ) (2023-04-28T13:14:36Z) - TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue
Modeling on Spoken Conversations [24.245354500835465]
本稿では,音声対話におけるタスク指向対話モデリングの堅牢性を高めるために,新しいモデルに依存しないデータ拡張パラダイムを提案する。
本手法は,音声対話におけるタスク指向対話モデリングのベンチマークであるDSTC10 Track2の両タスクにおいて,第1位となった。
論文 参考訳(メタデータ) (2021-12-23T10:04:25Z) - Self- and Pseudo-self-supervised Prediction of Speaker and Key-utterance
for Multi-party Dialogue Reading Comprehension [46.69961067676279]
マルチパーティ対話機械読解(MRC)は,複数の話者が対話を行うため,大きな課題をもたらす。
従来のモデルは、複雑なグラフベースのモジュールを使用して話者情報フローを組み込む方法に重点を置いていた。
本稿では、話者情報の流れを暗黙的にモデル化するために、話者とキー発話における2つの労働自由自助的・疑似自己監督型予測タスクを設計する。
論文 参考訳(メタデータ) (2021-09-08T16:51:41Z) - MPC-BERT: A Pre-Trained Language Model for Multi-Party Conversation
Understanding [58.95156916558384]
MPC理解のための事前学習モデルであるMPC-BERTを提案する。
我々は,MPC-BERTを,話者認識,話者識別,応答選択を含む3つの下流タスクで評価した。
論文 参考訳(メタデータ) (2021-06-03T01:49:12Z) - Structural Pre-training for Dialogue Comprehension [51.215629336320305]
本稿では,SPIDER, Structure Pre-trained DialoguE Readerについて述べる。
対話のような特徴をシミュレートするために,元のLM目的に加えて,2つの訓練目標を提案する。
広く使われている対話ベンチマークの実験結果から,新たに導入した自己教師型タスクの有効性が検証された。
論文 参考訳(メタデータ) (2021-05-23T15:16:54Z) - Matching Questions and Answers in Dialogues from Online Forums [12.64602629459043]
会話における2つのターン間の質問・回答関係のマッチングは、対話構造を解析する最初のステップであるだけでなく、対話システムの訓練にも有用である。
本稿では、相互注意という2つの同時注意機構により、距離情報と対話履歴の両方を考慮したQAマッチングモデルを提案する。
論文 参考訳(メタデータ) (2020-05-19T08:18:52Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。