論文の概要: SLASH: Embracing Probabilistic Circuits into Neural Answer Set
Programming
- arxiv url: http://arxiv.org/abs/2110.03395v1
- Date: Thu, 7 Oct 2021 12:35:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 15:45:42.556856
- Title: SLASH: Embracing Probabilistic Circuits into Neural Answer Set
Programming
- Title(参考訳): SLASH: 確率回路をニューラルアンサーセットプログラミングに適用する
- Authors: Arseny Skryagin, Wolfgang Stammer, Daniel Ochs, Devendra Singh Dhami,
Kristian Kersting
- Abstract要約: SLASH(Deep Probabilistic Language:DPPL)を紹介します。
SLASHのコアとなるのは、NPP(Neural-Probabilistic Predicates)と、応答セットプログラミングを通じて統合された論理プログラムである。
我々は,MNIST加算のベンチマークデータとDPPLの欠落データ予測や最先端性能のセット予測といった新しいタスクに基づいてSLASHを評価する。
- 参考スコア(独自算出の注目度): 15.814914345000574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of combining the robustness of neural networks and the expressivity
of symbolic methods has rekindled the interest in neuro-symbolic AI. Recent
advancements in neuro-symbolic AI often consider specifically-tailored
architectures consisting of disjoint neural and symbolic components, and thus
do not exhibit desired gains that can be achieved by integrating them into a
unifying framework. We introduce SLASH -- a novel deep probabilistic
programming language (DPPL). At its core, SLASH consists of
Neural-Probabilistic Predicates (NPPs) and logical programs which are united
via answer set programming. The probability estimates resulting from NPPs act
as the binding element between the logical program and raw input data, thereby
allowing SLASH to answer task-dependent logical queries. This allows SLASH to
elegantly integrate the symbolic and neural components in a unified framework.
We evaluate SLASH on the benchmark data of MNIST addition as well as novel
tasks for DPPLs such as missing data prediction and set prediction with
state-of-the-art performance, thereby showing the effectiveness and generality
of our method.
- Abstract(参考訳): ニューラルネットワークの堅牢性とシンボリックメソッドの表現性を組み合わせるという目標は、ニューロシンボリックAIへの関心を再燃させた。
近年のニューロシンボリックaiの進歩は、しばしば非結合的な神経コンポーネントとシンボリックコンポーネントからなる特別に調整されたアーキテクチャを考慮し、それらを統一されたフレームワークに統合することで達成できる望ましい成果を示さない。
SLASH(Deep Probabilistic Language:DPPL)を紹介します。
SLASHのコアとなるのは、NPP(Neural-Probabilistic Predicates)と、応答セットプログラミングを通じて統合された論理プログラムである。
NPPによる確率推定は、論理プログラムと生の入力データの結合要素として機能し、SLASHがタスク依存の論理クエリに応答できるようにする。
これによりslashは、シンボリックコンポーネントとニューラルコンポーネントを統一フレームワークにエレガントに統合することができる。
我々は,MNIST加算のベンチマークデータとDPPLの新たなタスク,例えば最先端性能によるデータ予測やセット予測等のSLASHを評価し,本手法の有効性と汎用性を示す。
関連論文リスト
- The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI(NeSy)は、AIシステムの安全なデプロイを保証することを約束している。
ニューラルネットワークとシンボリックコンポーネントを順次トレーニングする既存のパイプラインは、広範なラベリングを必要とする。
新しいアーキテクチャであるNeSyGPTは、生データから象徴的特徴を抽出する視覚言語基盤モデルを微調整する。
論文 参考訳(メタデータ) (2024-02-02T20:33:14Z) - Scalable Neural-Probabilistic Answer Set Programming [18.136093815001423]
本稿では、NPP(Neural-Probabilistic Predicates)と解集合プログラミング(ASP)を介して統合された論理プログラムからなる新しいDPPLであるSLASHを紹介する。
予測性能を犠牲にすることなく、推論を高速化し、(地上)プログラムの無意味な部分を抜粋する方法を示す。
我々は、MNIST追加のベンチマークタスクやVQA(Visual Question Answering)など、様々なタスクでSLASHを評価する。
論文 参考訳(メタデータ) (2023-06-14T09:45:29Z) - Symbolic Synthesis of Neural Networks [0.0]
グラフベース合成ニューラルネットワーク(GSSNN)について
GSSNNは、トポロジとパラメータがシンボルプログラムの出力によって通知されるニューラルネットワークの一種である。
人口レベルでシンボリック抽象化を開発することで、局所的特徴や離散的特徴を含む少数のデータを用いて、改良された一般化の信頼性の高いパターンを導出できることを実証する。
論文 参考訳(メタデータ) (2023-03-06T18:13:14Z) - A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic
Inference [11.393328084369783]
近年、DeepProbLogのような確率的ニューロシンボリックラーニング(PNL)のためのフレームワークが指数時間正確な推論を行う。
近似推論にスケーラブルなニューラルネットワークを用いるPNLの新しいフレームワークである近似ニューロシンボリック推論(A-NeSI)を紹介する。
論文 参考訳(メタデータ) (2022-12-23T15:24:53Z) - Neural-Symbolic Recursive Machine for Systematic Generalization [113.22455566135757]
我々は、基底記号システム(GSS)のコアとなるニューラル・シンボリック再帰機械(NSR)を紹介する。
NSRは神経知覚、構文解析、意味推論を統合している。
我々はNSRの有効性を,系統的一般化能力の探索を目的とした4つの挑戦的ベンチマークで評価した。
論文 参考訳(メタデータ) (2022-10-04T13:27:38Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
論文 参考訳(メタデータ) (2022-06-01T12:02:38Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - VAEL: Bridging Variational Autoencoders and Probabilistic Logic
Programming [3.759936323189418]
本稿では、可変オートエンコーダ(VAE)と確率論的論理(L)プログラミングの推論能力を統合するニューラルシンボリック生成モデルVAELを提案する。
論文 参考訳(メタデータ) (2022-02-07T10:16:53Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Closed Loop Neural-Symbolic Learning via Integrating Neural Perception,
Grammar Parsing, and Symbolic Reasoning [134.77207192945053]
従来の手法は強化学習アプローチを用いてニューラルシンボリックモデルを学ぶ。
我々は,脳神経知覚と記号的推論を橋渡しする前に,textbfgrammarモデルをテキストシンボリックとして導入する。
本稿では,トップダウンのヒューマンライクな学習手順を模倣して誤りを伝播する新しいtextbfback-searchアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-11T17:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。