PWG-IDS: An Intrusion Detection Model for Solving Class Imbalance in
IIoT Networks Using Generative Adversarial Networks
- URL: http://arxiv.org/abs/2110.03445v1
- Date: Wed, 6 Oct 2021 02:34:50 GMT
- Title: PWG-IDS: An Intrusion Detection Model for Solving Class Imbalance in
IIoT Networks Using Generative Adversarial Networks
- Authors: Lei Zhang, Shuaimin Jiang, Xiajiong Shen, Brij B. Gupta, Zhihong Tian
- Abstract summary: Pretraining Wasserstein generative adversarial network intrusion detection system (PWG-IDS) is proposed in this paper.
We use LightGBM as the classification algorithm to detect attack traffic in IIoT networks.
Our proposed PWG-IDS outperforms other models, with F1-scores of 99% and 89% on the 2 datasets.
- Score: 13.552023164115138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the continuous development of industrial IoT (IIoT) technology, network
security is becoming more and more important. And intrusion detection is an
important part of its security. However, since the amount of attack traffic is
very small compared to normal traffic, this imbalance makes intrusion detection
in it very difficult. To address this imbalance, an intrusion detection system
called pretraining Wasserstein generative adversarial network intrusion
detection system (PWG-IDS) is proposed in this paper. This system is divided
into two main modules: 1) In this module, we introduce the pretraining
mechanism in the Wasserstein generative adversarial network with gradient
penalty (WGAN-GP) for the first time, firstly using the normal network traffic
to train the WGAN-GP, and then inputting the imbalance data into the
pre-trained WGAN-GP to retrain and generate the final required data. 2)
Intrusion detection module: We use LightGBM as the classification algorithm to
detect attack traffic in IIoT networks. The experimental results show that our
proposed PWG-IDS outperforms other models, with F1-scores of 99% and 89% on the
2 datasets, respectively. And the pretraining mechanism we proposed can also be
widely used in other GANs, providing a new way of thinking for the training of
GANs.
Related papers
- Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks [4.836070911511429]
This paper proposes a novel network intrusion prediction framework that combines Large Language Models (LLMs) with Long Short Term Memory (LSTM) networks.
Our framework, evaluated on the CICIoT2023 IoT attack dataset, demonstrates a significant improvement in predictive capabilities, achieving an overall accuracy of 98%.
arXiv Detail & Related papers (2024-08-26T06:57:22Z) - EG-ConMix: An Intrusion Detection Method based on Graph Contrastive Learning [4.140068761522124]
We propose an EG-ConMix method based on E-GraphSAGE, incorporating a data augmentation module to fix the problem of data imbalance.
EG-ConMix exhibits significant advantages in terms of training speed and accuracy for large-scale graphs.
arXiv Detail & Related papers (2024-03-24T04:09:48Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for
CAVs [11.15939066175832]
jamming attacks pose substantial risks to the 5G network.
This work presents a novel deep learning-based technique for detecting jammers in CAV networks.
Results show that the proposed method achieves 96.4% detection rate in extra low jamming power.
arXiv Detail & Related papers (2024-03-05T04:29:31Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
We introduce a groundbreaking approach to protect GNN models in Machine Learning from model-centric attacks.
Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs.
We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms.
arXiv Detail & Related papers (2023-12-13T03:17:05Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - Using EBGAN for Anomaly Intrusion Detection [13.155954231596434]
We propose an EBGAN-based intrusion detection method, IDS-EBGAN, that classifies network records as normal traffic or malicious traffic.
The generator in IDS-EBGAN is responsible for converting the original malicious network traffic in the training set into adversarial malicious examples.
During testing, IDS-EBGAN uses reconstruction error of discriminator to classify traffic records.
arXiv Detail & Related papers (2022-06-21T13:49:34Z) - Mixture GAN For Modulation Classification Resiliency Against Adversarial
Attacks [55.92475932732775]
We propose a novel generative adversarial network (GAN)-based countermeasure approach.
GAN-based aims to eliminate the adversarial attack examples before feeding to the DNN-based classifier.
Simulation results show the effectiveness of our proposed defense GAN so that it could enhance the accuracy of the DNN-based AMC under adversarial attacks to 81%, approximately.
arXiv Detail & Related papers (2022-05-29T22:30:32Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - Channel-wise Gated Res2Net: Towards Robust Detection of Synthetic Speech
Attacks [67.7648985513978]
Existing approaches for anti-spoofing in automatic speaker verification (ASV) still lack generalizability to unseen attacks.
We present a novel, channel-wise gated Res2Net (CG-Res2Net), which modifies Res2Net to enable a channel-wise gating mechanism.
arXiv Detail & Related papers (2021-07-19T12:27:40Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.