Surrogate-Based Black-Box Optimization Method for Costly Molecular
Properties
- URL: http://arxiv.org/abs/2110.03522v1
- Date: Fri, 1 Oct 2021 15:28:15 GMT
- Title: Surrogate-Based Black-Box Optimization Method for Costly Molecular
Properties
- Authors: Jules Leguy, Thomas Cauchy, Beatrice Duval, Benoit Da Mota
- Abstract summary: We propose a surrogate-based black box optimization method to tackle jointly the optimization and machine learning problems.
We show that our approach can successfully optimize a costly property of interest much faster than a purely metaheuristic approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI-assisted molecular optimization is a very active research field as it is
expected to provide the next-generation drugs and molecular materials. An
important difficulty is that the properties to be optimized rely on costly
evaluations. Machine learning methods are investigated with success to predict
these properties, but show generalization issues on less known areas of the
chemical space. We propose here a surrogate-based black box optimization
method, to tackle jointly the optimization and machine learning problems. It
consists in optimizing the expected improvement of the surrogate of a molecular
property using an evolutionary algorithm. The surrogate is defined as a
Gaussian Process Regression (GPR) model, learned on a relevant area of the
search space with respect to the property to be optimized. We show that our
approach can successfully optimize a costly property of interest much faster
than a purely metaheuristic approach.
Related papers
- Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [77.50732023411811]
We propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM)
TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions.
Our approach surpasses state-of-the-art methods in optimizing molecular structural similarity and enhancing chemical properties on the benchmark dataset.
arXiv Detail & Related papers (2024-10-17T14:30:27Z) - XMOL: Explainable Multi-property Optimization of Molecules [2.320539066224081]
We propose Explainable Multi-property Optimization of Molecules (XMOL) to optimize multiple molecular properties simultaneously.
Our approach builds on state-of-the-art geometric diffusion models, extending them to multi-property optimization.
We integrate interpretive and explainable techniques throughout the optimization process.
arXiv Detail & Related papers (2024-09-12T06:35:04Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Molecule optimization via multi-objective evolutionary in implicit
chemical space [8.72872397589296]
MOMO is a multi-objective molecule optimization framework to address the challenge by combining learning of chemical knowledge with multi-objective evolutionary search.
We demonstrate the high performance of MOMO on four multi-objective property and similarity optimization tasks, and illustrate the search capability of MOMO through case studies.
arXiv Detail & Related papers (2022-12-17T09:09:23Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-11-05T11:19:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Optimizer Amalgamation [124.33523126363728]
We are motivated to study a new problem named Amalgamation: how can we best combine a pool of "teacher" amalgamations into a single "student" that can have stronger problem-specific performance?
First, we define three differentiable mechanisms to amalgamate a pool of analyticals by gradient descent.
In order to reduce variance of the process, we also explore methods to stabilize the process by perturbing the target.
arXiv Detail & Related papers (2022-03-12T16:07:57Z) - JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural
Networks for Inverse Molecular Design [1.6114012813668934]
Inverse molecular design, i.e., designing molecules with specific target properties, can be posed as an optimization problem.
Janus is a genetic algorithm inspired by parallel tempering that propagates two populations, one for exploration and another for exploitation.
Janus is augmented by a deep neural network that approximates molecular properties via active learning for enhanced sampling of the chemical space.
arXiv Detail & Related papers (2021-06-07T23:41:34Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
arXiv Detail & Related papers (2020-11-03T18:51:18Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.