De-randomizing MCMC dynamics with the diffusion Stein operator
- URL: http://arxiv.org/abs/2110.03768v1
- Date: Thu, 7 Oct 2021 19:59:46 GMT
- Title: De-randomizing MCMC dynamics with the diffusion Stein operator
- Authors: Zheyang Shen, Markus Heinonen, Samuel Kaski
- Abstract summary: Approximate Bayesian inference estimates descriptors of an intractable target distribution.
We propose de-randomized kernel-based particle samplers to all diffusion-based samplers known as MCMC dynamics.
- Score: 21.815713258703575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximate Bayesian inference estimates descriptors of an intractable target
distribution - in essence, an optimization problem within a family of
distributions. For example, Langevin dynamics (LD) extracts asymptotically
exact samples from a diffusion process because the time evolution of its
marginal distributions constitutes a curve that minimizes the KL-divergence via
steepest descent in the Wasserstein space. Parallel to LD, Stein variational
gradient descent (SVGD) similarly minimizes the KL, albeit endowed with a novel
Stein-Wasserstein distance, by deterministically transporting a set of particle
samples, thus de-randomizes the stochastic diffusion process. We propose
de-randomized kernel-based particle samplers to all diffusion-based samplers
known as MCMC dynamics. Following previous work in interpreting MCMC dynamics,
we equip the Stein-Wasserstein space with a fiber-Riemannian Poisson structure,
with the capacity of characterizing a fiber-gradient Hamiltonian flow that
simulates MCMC dynamics. Such dynamics discretizes into generalized SVGD
(GSVGD), a Stein-type deterministic particle sampler, with particle updates
coinciding with applying the diffusion Stein operator to a kernel function. We
demonstrate empirically that GSVGD can de-randomize complex MCMC dynamics,
which combine the advantages of auxiliary momentum variables and Riemannian
structure, while maintaining the high sample quality from an interacting
particle system.
Related papers
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Sampling in Unit Time with Kernel Fisher-Rao Flow [0.0]
We introduce a new mean-field ODE and corresponding interacting particle systems (IPS) for sampling from an unnormalized target density.
The IPS are gradient-free, available in closed form, and only require the ability to sample from a reference density and compute the (unnormalized) target-to-reference density ratio.
arXiv Detail & Related papers (2024-01-08T13:43:56Z) - Weighted Riesz Particles [0.0]
We consider the target distribution as a mapping where the infinite-dimensional space of the parameters consists of a number of deterministic submanifolds.
We study the properties of the point, called Riesz, and embed it into sequential MCMC.
We find that there will be higher acceptance rates with fewer evaluations.
arXiv Detail & Related papers (2023-12-01T14:36:46Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Machine-Learned Exclusion Limits without Binning [0.0]
We extend the Machine-Learned Likelihoods (MLL) method by including Kernel Density Estimators (KDE) to extract one-dimensional signal and background probability density functions.
We apply the method to two cases of interest at the LHC: a search for exotic Higgs bosons, and a $Z'$ boson decaying into lepton pairs.
arXiv Detail & Related papers (2022-11-09T11:04:50Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - A blob method method for inhomogeneous diffusion with applications to
multi-agent control and sampling [0.6562256987706128]
We develop a deterministic particle method for the weighted porous medium equation (WPME) and prove its convergence on bounded time intervals.
Our method has natural applications to multi-agent coverage algorithms and sampling probability measures.
arXiv Detail & Related papers (2022-02-25T19:49:05Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
A distributional optimization problem arises widely in machine learning and statistics.
We propose a novel particle-based algorithm, dubbed as variational transport, which approximately performs Wasserstein gradient descent.
We prove that when the objective function satisfies a functional version of the Polyak-Lojasiewicz (PL) (Polyak, 1963) and smoothness conditions, variational transport converges linearly.
arXiv Detail & Related papers (2020-12-21T18:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.