論文の概要: QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks
- arxiv url: http://arxiv.org/abs/2110.03861v1
- Date: Wed, 6 Oct 2021 14:44:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-11 13:18:05.026998
- Title: QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks
- Title(参考訳): QTN-VQC:量子ニューラルネットワークのためのエンドツーエンド学習フレームワーク
- Authors: Jun Qi, Chao-Han Huck Yang, Pin-Yu Chen
- Abstract要約: 可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
- 参考スコア(独自算出の注目度): 71.14713348443465
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advent of noisy intermediate-scale quantum (NISQ) computers raises a
crucial challenge to design quantum neural networks for fully quantum learning
tasks. To bridge the gap, this work proposes an end-to-end learning framework
named QTN-VQC, by introducing a trainable quantum tensor network (QTN) for
quantum embedding on a variational quantum circuit (VQC). The architecture of
QTN is composed of a parametric tensor-train network for feature extraction and
a tensor product encoding for quantum encoding. We highlight the QTN for
quantum embedding in terms of two perspectives: (1) we theoretically
characterize QTN by analyzing its representation power of input features; (2)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the
generation of quantum embedding to the output measurement. Our experiments on
the MNIST dataset demonstrate the advantages of QTN for quantum embedding over
other quantum embedding approaches.
- Abstract(参考訳): ノイズの多い中間スケール量子(nisq)コンピュータの出現は、完全な量子学習タスクのために量子ニューラルネットワークを設計するための重要な課題を提起する。
このギャップを埋めるために、変分量子回路(VQC)に量子埋め込みを行うトレーニング可能な量子テンソルネットワーク(QTN)を導入することにより、QTN-VQCと呼ばれるエンドツーエンドの学習フレームワークを提案する。
QTNのアーキテクチャは、特徴抽出のためのパラメトリックテンソルトレインネットワークと、量子符号化のためのテンソル積符号化からなる。
量子埋め込みのqtnについて,(1)入力特徴の表現力を分析して理論的にqtnを特徴づける,(2)qtnは量子埋め込みの生成から出力計測まで,エンドツーエンドのパラメトリックモデルパイプラインを可能にする,という2つの観点で強調する。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
関連論文リスト
- QKAN: Quantum Kolmogorov-Arnold Networks [0.6597195879147557]
Kolmogorov-Arnold Networks (KAN)と呼ばれる新しいニューラルネットワークアーキテクチャが登場し、コルモゴロフ-Arnold表現定理の構成構造に着想を得た。
我々のQKANは、量子特異値変換を含む強力な量子線型代数ツールを利用して、ネットワークの端にパラメータ化活性化関数を適用する。
QKANはブロックエンコーディングに基づいており、本質的に直接量子入力に適している。
論文 参考訳(メタデータ) (2024-10-06T10:11:57Z) - Measurement-based quantum machine learning [0.0]
量子ニューラルネットワーク(QNN)は、古典的ニューラルネットワークの概念を量子データのための量子モデルに拡張するオブジェクトである。
マルチトライアングルアンサッツ (MuTA) と呼ぶこのフレームワークで普遍的なQNNを提案する。
論文 参考訳(メタデータ) (2024-05-14T05:17:01Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
本稿では,複数の小型量子デバイスの量子資源を協調的に利用することにより,スケーラブルな量子ニューラルネットワーク(SQNN)を実現する手法を提案する。
SQNNシステムでは、いくつかの量子デバイスが量子特徴抽出器として使われ、入力インスタンスから並列に局所的な特徴を抽出し、量子デバイスは量子予測器として機能する。
論文 参考訳(メタデータ) (2022-08-04T20:35:03Z) - Theoretical Error Performance Analysis for Variational Quantum Circuit
Based Functional Regression [83.79664725059877]
本研究では,次元減少と機能回帰のためのエンドツーエンドの量子ニューラルネットワークであるTTN-VQCを提案する。
また,polyak-Lojasiewicz (PL) 条件を利用してTTN-VQCの最適化特性を特徴付ける。
論文 参考訳(メタデータ) (2022-06-08T06:54:07Z) - An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver [0.0]
最近提案された量子畳み込みニューラルネットワーク(QCNN)は、量子回路を使用するための新しいフレームワークを提供する。
ここでは、一次元逆場イジングモデル(TFIM)に対する変分量子固有解器の波動関数によるQCNNのトレーニング結果を示す。
QCNNは、それから遠く離れた波動関数によって訓練されたとしても、量子臨界点の周りの波動関数の対応する位相を予測するために訓練することができる。
論文 参考訳(メタデータ) (2021-11-09T12:08:49Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。