論文の概要: QKAN: Quantum Kolmogorov-Arnold Networks
- arxiv url: http://arxiv.org/abs/2410.04435v1
- Date: Sun, 6 Oct 2024 10:11:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 07:51:01.016855
- Title: QKAN: Quantum Kolmogorov-Arnold Networks
- Title(参考訳): QKAN:Quantum Kolmogorov-Arnold Networks
- Authors: Petr Ivashkov, Po-Wei Huang, Kelvin Koor, Lirandë Pira, Patrick Rebentrost,
- Abstract要約: Kolmogorov-Arnold Networks (KAN)と呼ばれる新しいニューラルネットワークアーキテクチャが登場し、コルモゴロフ-Arnold表現定理の構成構造に着想を得た。
我々のQKANは、量子特異値変換を含む強力な量子線型代数ツールを利用して、ネットワークの端にパラメータ化活性化関数を適用する。
QKANはブロックエンコーディングに基づいており、本質的に直接量子入力に適している。
- 参考スコア(独自算出の注目度): 0.6597195879147557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The potential of learning models in quantum hardware remains an open question. Yet, the field of quantum machine learning persistently explores how these models can take advantage of quantum implementations. Recently, a new neural network architecture, called Kolmogorov-Arnold Networks (KAN), has emerged, inspired by the compositional structure of the Kolmogorov-Arnold representation theorem. In this work, we design a quantum version of KAN called QKAN. Our QKAN exploits powerful quantum linear algebra tools, including quantum singular value transformation, to apply parameterized activation functions on the edges of the network. QKAN is based on block-encodings, making it inherently suitable for direct quantum input. Furthermore, we analyze its asymptotic complexity, building recursively from a single layer to an end-to-end neural architecture. The gate complexity of QKAN scales linearly with the cost of constructing block-encodings for input and weights, suggesting broad applicability in tasks with high-dimensional input. QKAN serves as a trainable quantum machine learning model by combining parameterized quantum circuits with established quantum subroutines. Lastly, we propose a multivariate state preparation strategy based on the construction of the QKAN architecture.
- Abstract(参考訳): 量子ハードウェアにおける学習モデルの可能性は、依然としてオープンな疑問である。
しかし、量子機械学習の分野は、これらのモデルが量子実装をどのように活用できるかを永続的に探求している。
近年、コルモゴロフ・アルノルド表現定理の構成構造に触発されて、コルモゴロフ・アルノルドネットワーク(KAN)と呼ばれる新しいニューラルネットワークアーキテクチャが出現している。
本研究ではQKANと呼ばれる量子バージョンを設計する。
我々のQKANは、量子特異値変換を含む強力な量子線型代数ツールを利用して、ネットワークの端にパラメータ化活性化関数を適用する。
QKANはブロックエンコーディングに基づいており、本質的に直接量子入力に適している。
さらに,その漸近的複雑性を分析し,単一層からエンドツーエンドのニューラルネットワークアーキテクチャへ再帰的に構築する。
QKANのゲート複雑性は、入力と重みのためのブロックエンコーディングを構築するコストと線形にスケールし、高次元入力を持つタスクに広く適用可能であることを示唆している。
QKANは、パラメータ化された量子回路と確立された量子サブルーチンを組み合わせることで、トレーニング可能な量子機械学習モデルとして機能する。
最後に,QKANアーキテクチャ構築に基づく多変量状態準備戦略を提案する。
関連論文リスト
- Shedding Light on the Future: Exploring Quantum Neural Networks through Optics [3.1935899800030096]
量子ニューラルネットワーク(QNN)は、急速に発展する量子機械学習分野において、新興技術として重要な役割を果たす。
本稿では,QNNの概念とその物理的実現,特に量子光学に基づく実装について概説する。
論文 参考訳(メタデータ) (2024-09-04T08:49:57Z) - Measurement-based quantum machine learning [0.0]
量子ニューラルネットワーク(QNN)は、古典的ニューラルネットワークの概念を量子データのための量子モデルに拡張するオブジェクトである。
マルチトライアングルアンサッツ (MuTA) と呼ぶこのフレームワークで普遍的なQNNを提案する。
論文 参考訳(メタデータ) (2024-05-14T05:17:01Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
各量子状態に対するゲートの作用を特徴付ける新しい量子ゲート距離を提案する。
提案手法は、経験的量子機械学習の3つの問題において、ベンチマークを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-28T16:23:24Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
量子ノードのランダムネットワークが量子コンピューティングの堅牢なハードウェアとしてどのように使用できるかを示す。
我々のネットワークアーキテクチャは、量子ノードの単一層のみを最適化することで量子演算を誘導する。
数量子状態においては、量子回路内の複数の量子ゲートのシーケンスは単一の演算で圧縮することができる。
論文 参考訳(メタデータ) (2020-03-21T03:29:16Z) - TensorFlow Quantum: A Software Framework for Quantum Machine Learning [36.75544801185366]
本稿では,古典的あるいは量子的データに対するハイブリッド量子古典モデルの高速プロトタイピングのためのオープンソースライブラリであるQuantum (TFQ)を紹介する。
本稿では,メタラーニング,階層学習,ハミルトン学習,サーマル状態のサンプリング,変分量子固有解法,量子位相遷移の分類,生成的敵ネットワーク,強化学習など,高度な量子学習タスクにTFQを適用する方法を紹介する。
論文 参考訳(メタデータ) (2020-03-06T01:31:43Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。