論文の概要: An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver
- arxiv url: http://arxiv.org/abs/2111.05076v1
- Date: Tue, 9 Nov 2021 12:08:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 18:17:10.046105
- Title: An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver
- Title(参考訳): 量子機械学習の量子関連システムへの応用:量子変分固有解法からの多体波動関数の分類器としての量子畳み込みニューラルネットワーク
- Authors: Nathaniel Wrobel, Anshumitra Baul, Juana Moreno, Ka-Ming Tam
- Abstract要約: 最近提案された量子畳み込みニューラルネットワーク(QCNN)は、量子回路を使用するための新しいフレームワークを提供する。
ここでは、一次元逆場イジングモデル(TFIM)に対する変分量子固有解器の波動関数によるQCNNのトレーニング結果を示す。
QCNNは、それから遠く離れた波動関数によって訓練されたとしても、量子臨界点の周りの波動関数の対応する位相を予測するために訓練することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has been applied on a wide variety of models, from classical
statistical mechanics to quantum strongly correlated systems for the
identification of phase transitions. The recently proposed quantum
convolutional neural network (QCNN) provides a new framework for using quantum
circuits instead of classical neural networks as the backbone of classification
methods. We present here the results from training the QCNN by the
wavefunctions of the variational quantum eigensolver for the one-dimensional
transverse field Ising model (TFIM). We demonstrate that the QCNN identifies
wavefunctions which correspond to the paramagnetic phase and the ferromagnetic
phase of the TFIM with good accuracy. The QCNN can be trained to predict the
corresponding phase of wavefunctions around the putative quantum critical
point, even though it is trained by wavefunctions far away from it. This
provides a basis for exploiting the QCNN to identify the quantum critical
point.
- Abstract(参考訳): 機械学習は、古典的統計力学から位相遷移の同定のための量子強相関系まで、様々なモデルに適用されてきた。
最近提案された量子畳み込みニューラルネットワーク(QCNN)は、古典的ニューラルネットワークの代わりに量子回路を分類手法のバックボーンとして使用するための新しいフレームワークを提供する。
本稿では,一次元逆場イジングモデル(TFIM)に対する変分量子固有解器の波動関数によるQCNNのトレーニング結果について述べる。
QCNNは、TFIMの常磁性相と強磁性相に対応する波動関数を精度良く同定する。
QCNNは、それから遠く離れた波動関数によって訓練されたとしても、量子臨界点の周りの波動関数の対応する位相を予測するために訓練することができる。
これは量子臨界点を特定するためにQCNNを利用する基盤を提供する。
関連論文リスト
- Measurement-based quantum machine learning [0.0]
量子ニューラルネットワーク(QNN)は、古典的ニューラルネットワークの概念を量子データのための量子モデルに拡張するオブジェクトである。
マルチトライアングルアンサッツ (MuTA) と呼ぶこのフレームワークで普遍的なQNNを提案する。
論文 参考訳(メタデータ) (2024-05-14T05:17:01Z) - Quantum Classical Algorithm for the Study of Phase Transitions in the Hubbard Model via Dynamical Mean-Field Theory [0.0]
本稿では, 量子コンピューティング, 多体理論, 量子機械学習を連携させて, 強相関系の研究を行うワークフローを提案する。
DMFT近似におけるHubbardモデルのゼロ温度波動関数のデータベースを生成する。
次に、QMLアルゴリズムを用いて金属相とモット絶縁体相を区別し、金属-モット絶縁体相転移を捉える。
論文 参考訳(メタデータ) (2023-08-02T19:11:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - QuCNN : A Quantum Convolutional Neural Network with Entanglement Based
Backpropagation [9.760266670459446]
QuCNNはパラメータ化されたマルチ量子状態ベースのニューラルネットワーク層で、各量子フィルタ状態と各量子データ状態の類似性を演算する。
バック伝搬は単一アンシラビット量子ルーチンによって達成できる。
MNISTイメージの小さなサブセットにデータ状態とフィルタ状態の畳み込み層を適用して検証する。
論文 参考訳(メタデータ) (2022-10-11T13:36:15Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
本稿では,複数の小型量子デバイスの量子資源を協調的に利用することにより,スケーラブルな量子ニューラルネットワーク(SQNN)を実現する手法を提案する。
SQNNシステムでは、いくつかの量子デバイスが量子特徴抽出器として使われ、入力インスタンスから並列に局所的な特徴を抽出し、量子デバイスは量子予測器として機能する。
論文 参考訳(メタデータ) (2022-08-04T20:35:03Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。