Knowledge-aware Coupled Graph Neural Network for Social Recommendation
- URL: http://arxiv.org/abs/2110.03987v1
- Date: Fri, 8 Oct 2021 09:13:51 GMT
- Title: Knowledge-aware Coupled Graph Neural Network for Social Recommendation
- Authors: Chao Huang, Huance Xu, Yong Xu, Peng Dai, Lianghao Xia, Mengyin Lu,
Liefeng Bo, Hao Xing, Xiaoping Lai, Yanfang Ye
- Abstract summary: We propose a Knowledge-aware Coupled Graph Neural Network (KCGN) that injects the inter-dependent knowledge across items and users into the recommendation framework.
KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness.
We further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns.
- Score: 29.648300580880683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social recommendation task aims to predict users' preferences over items with
the incorporation of social connections among users, so as to alleviate the
sparse issue of collaborative filtering. While many recent efforts show the
effectiveness of neural network-based social recommender systems, several
important challenges have not been well addressed yet: (i) The majority of
models only consider users' social connections, while ignoring the
inter-dependent knowledge across items; (ii) Most of existing solutions are
designed for singular type of user-item interactions, making them infeasible to
capture the interaction heterogeneity; (iii) The dynamic nature of user-item
interactions has been less explored in many social-aware recommendation
techniques. To tackle the above challenges, this work proposes a
Knowledge-aware Coupled Graph Neural Network (KCGN) that jointly injects the
inter-dependent knowledge across items and users into the recommendation
framework. KCGN enables the high-order user- and item-wise relation encoding by
exploiting the mutual information for global graph structure awareness.
Additionally, we further augment KCGN with the capability of capturing dynamic
multi-typed user-item interactive patterns. Experimental studies on real-world
datasets show the effectiveness of our method against many strong baselines in
a variety of settings. Source codes are available at:
https://github.com/xhcdream/KCGN.
Related papers
- Topology-Aware Popularity Debiasing via Simplicial Complexes [19.378410889819165]
Test-time Simplicial Propagation (TSP) incorporates simplicial complexes (SCs) to enhance the expressiveness of Graph Neural Networks (GNNs)
Our approach captures multi-order relationships through SCs, providing a more comprehensive representation of user-item interactions.
Our method produces more uniform distributions of item representations, leading to fairer and more accurate recommendations.
arXiv Detail & Related papers (2024-11-21T07:12:47Z) - Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
CoGCL aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.
We introduce a multi-level vector quantizer in an end-to-end manner to quantize user and item representations into discrete codes.
For neighborhood structure, we propose virtual neighbor augmentation by treating discrete codes as virtual neighbors.
Regarding semantic relevance, we identify similar users/items based on shared discrete codes and interaction targets to generate the semantically relevant view.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - Graph Neural Networks with Dynamic and Static Representations for Social
Recommendation [13.645346050614855]
This paper proposes graph neural networks with dynamic and static representations for social recommendation (GNN-DSR)
The attention mechanism is used to aggregate the social influence of users on the target user and the correlative items' influence on a given item.
Experiments on three real-world recommender system datasets validate the effectiveness of GNN-DSR.
arXiv Detail & Related papers (2022-01-26T05:07:17Z) - Global Context Enhanced Social Recommendation with Hierarchical Graph
Neural Networks [29.82196381724099]
We propose a new Social Recommendation framework with Hierarchical Graph Neural Networks (SR-HGNN)
In particular, we first design a relation-aware reconstructed graph neural network to inject the cross-type collaborative semantics into the recommendation framework.
In addition, we further augment SR-HGNN with a social relation encoder based on the mutual information learning paradigm between low-level user embeddings and high-level global representation.
arXiv Detail & Related papers (2021-10-08T11:26:04Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Social Recommendation with Self-Supervised Metagraph Informax Network [21.41026069530997]
We propose a Self-Supervised Metagraph Infor-max Network (SMIN) which investigates the potential of incorporating social- and knowledge-aware relational structures into the user preference representation for recommendation.
To inject high-order collaborative signals, we generalize the mutual information learning paradigm under the self-supervised graph-based collaborative filtering.
Experimental results on several real-world datasets demonstrate the effectiveness of our SMIN model over various state-of-the-art recommendation methods.
arXiv Detail & Related papers (2021-10-08T08:18:37Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.