Global Context Enhanced Social Recommendation with Hierarchical Graph
Neural Networks
- URL: http://arxiv.org/abs/2110.04039v1
- Date: Fri, 8 Oct 2021 11:26:04 GMT
- Title: Global Context Enhanced Social Recommendation with Hierarchical Graph
Neural Networks
- Authors: Huance Xu, Chao Huang, Yong Xu, Lianghao Xia, Hao Xing, Dawei Yin
- Abstract summary: We propose a new Social Recommendation framework with Hierarchical Graph Neural Networks (SR-HGNN)
In particular, we first design a relation-aware reconstructed graph neural network to inject the cross-type collaborative semantics into the recommendation framework.
In addition, we further augment SR-HGNN with a social relation encoder based on the mutual information learning paradigm between low-level user embeddings and high-level global representation.
- Score: 29.82196381724099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social recommendation which aims to leverage social connections among users
to enhance the recommendation performance. With the revival of deep learning
techniques, many efforts have been devoted to developing various neural
network-based social recommender systems, such as attention mechanisms and
graph-based message passing frameworks. However, two important challenges have
not been well addressed yet: (i) Most of existing social recommendation models
fail to fully explore the multi-type user-item interactive behavior as well as
the underlying cross-relational inter-dependencies. (ii) While the learned
social state vector is able to model pair-wise user dependencies, it still has
limited representation capacity in capturing the global social context across
users. To tackle these limitations, we propose a new Social Recommendation
framework with Hierarchical Graph Neural Networks (SR-HGNN). In particular, we
first design a relation-aware reconstructed graph neural network to inject the
cross-type collaborative semantics into the recommendation framework. In
addition, we further augment SR-HGNN with a social relation encoder based on
the mutual information learning paradigm between low-level user embeddings and
high-level global representation, which endows SR-HGNN with the capability of
capturing the global social contextual signals. Empirical results on three
public benchmarks demonstrate that SR-HGNN significantly outperforms
state-of-the-art recommendation methods. Source codes are available at:
https://github.com/xhcdream/SR-HGNN.
Related papers
- Graph Bottlenecked Social Recommendation [47.83350026188183]
We propose a novel Graph Bottlenecked Social Recommendation (GBSR) framework to tackle the social noise issue.
GBSR is a model-agnostic social denoising framework, that aims to maximize the mutual information between the denoised social graph and recommendation labels.
arXiv Detail & Related papers (2024-06-12T13:44:22Z) - Link Prediction for Social Networks using Representation Learning and
Heuristic-based Features [1.279952601030681]
Predicting missing links in social networks efficiently can help in various modern-day business applications.
Here, we explore various feature extraction techniques to generate representations of nodes and edges in a social network.
arXiv Detail & Related papers (2024-03-13T15:23:55Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Knowledge-aware Coupled Graph Neural Network for Social Recommendation [29.648300580880683]
We propose a Knowledge-aware Coupled Graph Neural Network (KCGN) that injects the inter-dependent knowledge across items and users into the recommendation framework.
KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness.
We further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns.
arXiv Detail & Related papers (2021-10-08T09:13:51Z) - Social Recommendation with Self-Supervised Metagraph Informax Network [21.41026069530997]
We propose a Self-Supervised Metagraph Infor-max Network (SMIN) which investigates the potential of incorporating social- and knowledge-aware relational structures into the user preference representation for recommendation.
To inject high-order collaborative signals, we generalize the mutual information learning paradigm under the self-supervised graph-based collaborative filtering.
Experimental results on several real-world datasets demonstrate the effectiveness of our SMIN model over various state-of-the-art recommendation methods.
arXiv Detail & Related papers (2021-10-08T08:18:37Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Interpretable Signed Link Prediction with Signed Infomax Hyperbolic
Graph [54.03786611989613]
signed link prediction in social networks aims to reveal the underlying relationships (i.e. links) among users (i.e. nodes)
We develop a unified framework, termed as Signed Infomax Hyperbolic Graph (textbfSIHG)
In order to model high-order user relations and complex hierarchies, the node embeddings are projected and measured in a hyperbolic space with a lower distortion.
arXiv Detail & Related papers (2020-11-25T05:09:03Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.