論文の概要: Multi Proxy Anchor Family Loss for Several Types of Gradients
- arxiv url: http://arxiv.org/abs/2110.03997v8
- Date: Sun, 11 Jun 2023 10:10:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 03:27:03.953658
- Title: Multi Proxy Anchor Family Loss for Several Types of Gradients
- Title(参考訳): 数種類の勾配に対するマルチプロキシアンカーファミリー損失
- Authors: Shozo Saeki, Minoru Kawahara, and Hirohisa Aman
- Abstract要約: 本稿では,3つのマルチプロキシ・アンカー(MPA)ファミリーの損失と正規化割引累積ゲイン(nDCG@k)尺度を提案する。
MPAファミリーの損失は、勾配問題の解決によるニューラルネットワークのトレーニング能力を向上させる。
MPAファミリーの損失の有効性を実証し、MPAファミリーの損失は細粒度画像の2つのデータセットに対して高い精度を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deep metric learning (DML) objective is to learn a neural network that
maps into an embedding space where similar data are near and dissimilar data
are far. However, conventional proxy-based losses for DML have two problems:
gradient problem and application of the real-world dataset with multiple local
centers. Additionally, the performance metrics of DML also have some issues
with stability and flexibility. This paper proposes three multi-proxies anchor
(MPA) family losses and a normalized discounted cumulative gain (nDCG@k)
metric. This paper makes three contributions. (1) MPA-family losses can learn
using a real-world dataset with multi-local centers. (2) MPA-family losses
improve the training capacity of a neural network owing to solving the gradient
problem. (3) MPA-family losses have data-wise or class-wise characteristics
with respect to gradient generation. Finally, we demonstrate the effectiveness
of MPA-family losses, and MPA-family losses achieves higher accuracy on two
datasets for fine-grained images.
- Abstract(参考訳): deep metric learning(dml)の目的は、類似したデータが近く、類似したデータが遠くにある埋め込み空間にマップするニューラルネットワークを学ぶことである。
しかし、従来のプロキシベースのDMLの損失には、勾配問題と複数のローカルセンターを持つ実世界のデータセットの適用の2つの問題がある。
さらに、DMLのパフォーマンス指標には、安定性と柔軟性にもいくつかの問題がある。
本稿では、3つのマルチプロキシアンカー(mpa)ファミリーロスと正規化ディスカウント累積ゲイン(ndcg@k)メトリックを提案する。
この論文には3つの貢献がある。
1)マルチローカルセンターを持つ実世界のデータセットを用いて,MPAファミリーの損失を学習することができる。
2) MPAファミリーの損失は勾配問題の解決によるニューラルネットワークのトレーニング能力を向上させる。
3) MPAファミリーの損失は, 勾配発生に関するデータワイド, クラスワイド特性を有する。
最後に, MPAファミリーの損失の有効性を実証し, MPAファミリーの損失は細粒度画像の2つのデータセットに対して高い精度を実現する。
関連論文リスト
- DACB-Net: Dual Attention Guided Compact Bilinear Convolution Neural Network for Skin Disease Classification [3.3891365992104605]
本稿では,DACB-Netを用いた3分岐デュアルアテンションガイド型コンパクトバイリニアCNNについて紹介する。
グローバルブランチは、失った識別的特徴を補償し、関連する収穫地に対する注意熱マップ(AHM)を生成する。
このフレームワークはデータ強化、転送学習、微調整を統合し、データの不均衡に対処し、分類性能を改善し、計算コストを削減する。
論文 参考訳(メタデータ) (2024-07-03T18:32:54Z) - Multi-Epoch learning with Data Augmentation for Deep Click-Through Rate Prediction [53.88231294380083]
非連続的な学習シナリオと連続的な学習シナリオの両方に適合する、新しいMulti-Epoch Learning with Data Augmentation (MEDA)フレームワークを導入する。
MEDAは、その後のトレーニングデータへの埋め込み層の依存性を減らし、過度な適合を最小化する。
実験の結果,プレトレーニングした層が新しい埋め込み空間に適応し,過度に適合することなく性能を向上できることが確認された。
論文 参考訳(メタデータ) (2024-06-27T04:00:15Z) - Towards Interpretable Deep Local Learning with Successive Gradient Reconciliation [70.43845294145714]
グローバルバックプロパゲーション(BP)に対するニューラルネットワークトレーニングの信頼性の回復が、注目すべき研究トピックとして浮上している。
本稿では,隣接モジュール間の勾配調整を連続的に調整する局所的学習戦略を提案する。
提案手法はローカルBPとBPフリー設定の両方に統合できる。
論文 参考訳(メタデータ) (2024-06-07T19:10:31Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
距離学習パラダイムに該当する新しいレペラ・トラクタ損失を提案するが、ペアを生成する必要がなく、直接L2メトリックに最適化する。
CBIRタスクにおいて,畳み込みアーキテクチャと変圧器アーキテクチャの両方を用いて,少数ショットおよびフルセットトレーニングの文脈で提案した目的を評価する。
論文 参考訳(メタデータ) (2023-06-01T12:53:10Z) - SuSana Distancia is all you need: Enforcing class separability in metric
learning via two novel distance-based loss functions for few-shot image
classification [0.9236074230806579]
本稿では,少数のデータ間のクラス内距離とクラス間距離を調べることで,埋め込みベクトルの重要性を考慮に入れた2つの損失関数を提案する。
以上の結果から,miniImagenNetベンチマークの精度は,他のメトリクスベースの数ショット学習手法に比べて2%向上した。
論文 参考訳(メタデータ) (2023-05-15T23:12:09Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
リモートセンシング変化検出(RS-CD)は、マルチテンポラルリモートセンシング画像(MT-RSI)から関連する変化を検出することを目的とする。
既存のRS-CD法の性能は、大規模な注釈付きデータセットのトレーニングによるものである。
本稿では,これらの問題に対処可能なディープメトリック学習に基づく教師なしCD手法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:52:45Z) - Zero-Shot Transfer Learning for Structural Health Monitoring using
Generative Adversarial Networks and Spectral Mapping [4.300434865291411]
本稿では,ソースの損傷のない事例と損傷の事例を区別し,ドメイン適応(DA)技術を利用するトランスファーラーニング(TL)手法を提案する。
高次元の特徴は、信号処理領域の知識を利用して一般化可能なDAアプローチを考案することができる。
広範囲にわたる実験結果から,無損傷事例と損傷事例の相違点に関する知識の伝達に成功したことを示す。
論文 参考訳(メタデータ) (2022-12-07T23:34:11Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - Invertible Manifold Learning for Dimension Reduction [44.16432765844299]
次元減少(DR)は,重要情報の保存により高次元データの低次元表現を学習することを目的としている。
Inv-ML(invertible manifold learning)と呼ばれる新しい2段階DR法を提案し、理論的な情報損失のないDRと実用的なDRのギャップを埋める。
実験は、i-ML-Encと呼ばれる、inv-MLのニューラルネットワーク実装による7つのデータセットで実施される。
論文 参考訳(メタデータ) (2020-10-07T14:22:51Z) - Unsupervised Domain Adaptation in the Dissimilarity Space for Person
Re-identification [11.045405206338486]
そこで本稿では,ペア距離の整合性を実現するために,D-MMD(Dissimilarity-based Maximum Mean Discrepancy)の新たな損失を提案する。
3つの挑戦的なベンチマークデータセットによる実験結果から、D-MMDの損失は、ソースとドメインの分布がよりよくなるにつれて減少することが示された。
論文 参考訳(メタデータ) (2020-07-27T22:10:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。