論文の概要: Chromatic Aberration Recovery on Arbitrary Images
- arxiv url: http://arxiv.org/abs/2110.04030v1
- Date: Fri, 8 Oct 2021 11:02:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-11 20:38:38.315723
- Title: Chromatic Aberration Recovery on Arbitrary Images
- Title(参考訳): 任意画像による色収差回復
- Authors: Daniel J. Blueman (University of Bristol)
- Abstract要約: この研究は、横色収差の堅牢かつ自動最小化を実証し、人工画像と実画像の両方を用いて画質の低下を回復する。
アルゴリズムの動作を検証するために一連のテストイメージが使用され、実際の画像の一連の変更がアプローチのパフォーマンスを評価するために使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital imaging sensor technology has continued to outpace development in
optical technology in modern imaging systems. The resulting quality loss
attributable to lateral chromatic aberration is becoming increasingly
significant as sensor resolution increases; other classes of aberration are
less significant with classical image enhancement (e.g. sharpening), whereas
lateral chromatic aberration becomes more significant. The goals of
higher-performance and lighter lens systems drive a recent need to find new
ways to overcome resulting image quality limitations.
This work demonstrates the robust and automatic minimisation of lateral
chromatic aberration, recovering the loss of image quality using both
artificial and real-world images. A series of test images are used to validate
the functioning of the algorithm, and changes across a series of real-world
images are used to evaluate the performance of the approach.
- Abstract(参考訳): デジタルイメージングセンサー技術は、現代の撮像システムにおける光学技術の発展を上回っている。
センサの解像度が向上するにつれて、横色収差に起因する品質低下はますます顕著になり、他の種類の収差は古典的な画像強調(例えば、シャープニング)では顕著に減少し、一方、横色収差はより重要になっている。
高性能で軽量なレンズシステムの目標は、最近の画像品質の制限を克服する新しい方法を見つける必要がある。
この研究は、横色収差の堅牢かつ自動最小化を実証し、人工画像と実画像の両方を用いて画質の低下を回復する。
アルゴリズムの動作を検証するために一連のテストイメージが使用され、実際の画像の一連の変更がアプローチのパフォーマンスを評価するために使用される。
関連論文リスト
- Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem [23.833099288826045]
画素ベースの回帰損失を用いた単一画像超解法(SISR)モデルのトレーニングは、高い歪みメトリクススコアを得ることができる。
しかし、高周波の詳細の回復が不十分なため、しばしばぼやけた画像が生じる。
本稿では,Multi-Objective Optimization(MOO)をSISRモデルのトレーニングプロセスに組み込んで,知覚品質と歪みのバランスをとる手法を提案する。
論文 参考訳(メタデータ) (2024-09-05T02:14:04Z) - Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
論文 参考訳(メタデータ) (2024-07-18T06:50:39Z) - DI-Retinex: Digital-Imaging Retinex Theory for Low-Light Image Enhancement [73.57965762285075]
本稿では,デジタル画像におけるRetinex理論の理論的および実験的解析を通じて,Digital-Imaging Retinex theory(DI-Retinex)という新しい表現を提案する。
提案手法は, 視覚的品質, モデルサイズ, 速度の観点から, 既存の教師なし手法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-04T09:53:00Z) - Fearless Luminance Adaptation: A Macro-Micro-Hierarchical Transformer
for Exposure Correction [65.5397271106534]
単一のニューラルネットワークは、すべての露光問題に対処することが難しい。
特に、コンボリューションは、極端に過度に露出した領域における忠実な色や詳細を復元する能力を妨げる。
本稿では,マクロマイクロ階層変換器を提案する。マクロマイクロ階層変換器は,長距離依存を捉えるマクロアテンション,局所特徴を抽出するマイクロアテンション,粗大な修正のための階層構造を提案する。
論文 参考訳(メタデータ) (2023-09-02T09:07:36Z) - Neural Invertible Variable-degree Optical Aberrations Correction [6.6855248718044225]
本稿では,その情報ロスレス特性を利用して,可逆的アーキテクチャを用いた新しい収差補正手法を提案する。
アーキテクチャ内では、可変度で収差を処理できる条件付き可逆ブロックを開発する。
本手法は,物理画像シミュレーションによる合成データセットと実捕集データセットの両方を用いて評価する。
論文 参考訳(メタデータ) (2023-04-12T01:56:42Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
本稿では,露光ブラケット付きハンドヘルドカメラで撮影した原写真からの高解像度・高ダイナミックレンジカラー画像の再構成について紹介する。
提案アルゴリズムは,画像復元における最先端の学習手法と比較して,メモリ要求の少ない高速なアルゴリズムである。
実験では、ハンドヘルドカメラで野生で撮影された実際の写真に最大4ドル(約4,800円)の超高解像度な要素で優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-29T13:31:28Z) - Lightweight HDR Camera ISP for Robust Perception in Dynamic Illumination
Conditions via Fourier Adversarial Networks [35.532434169432776]
照明とノイズ除去の逐次的バランスをとる軽量な2段階画像強調アルゴリズムを提案する。
また、異なる照明条件下での一貫した画像強調のためのフーリエスペクトルベース対向フレームワーク(AFNet)を提案する。
また,定量的および定性的な評価に基づいて,画像強調技術が共通認識タスクの性能に与える影響について検討した。
論文 参考訳(メタデータ) (2022-04-04T18:48:51Z) - Invertible Network for Unpaired Low-light Image Enhancement [78.33382003460903]
本稿では,非可逆的ネットワークを活用して,前処理における低照度画像の強化と,非対向学習により逆向きに通常の照度画像の劣化を図ることを提案する。
対向的損失に加えて、トレーニングの安定性を確保し、より詳細な画像を保存するために、様々な損失関数を設計する。
低照度画像に対するプログレッシブ自己誘導強調処理を提案し,SOTAに対して良好な性能を示す。
論文 参考訳(メタデータ) (2021-12-24T17:00:54Z) - Burst Imaging for Light-Constrained Structure-From-Motion [4.125187280299246]
低光環境下で得られた画像から3次元再構成を支援する画像処理技術を開発した。
バースト写真に基づく本手法は,短時間露光画像のバースト内における画像登録に直接的手法を用いる。
本手法は,低光環境下でのロボットの動作を可能にするための重要なステップであり,地中鉱山や夜間作業などの環境におけるロボットの動作に応用できる可能性がある。
論文 参考訳(メタデータ) (2021-08-23T02:12:40Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
単一画像スーパーレゾリューション (sisr) 法は, 推定劣化モデルが実画像から逸脱した場合はうまく動作しない。
本稿では, ランダムにシャッフルされたブラー, ダウンサンプリング, ノイズ劣化からなる, より複雑で実用的な劣化モデルを提案する。
論文 参考訳(メタデータ) (2021-03-25T17:40:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。