A Mathematical Model of the Hidden Feedback Loop Effect in Machine Learning Systems
- URL: http://arxiv.org/abs/2405.02726v1
- Date: Sat, 4 May 2024 17:57:24 GMT
- Title: A Mathematical Model of the Hidden Feedback Loop Effect in Machine Learning Systems
- Authors: Andrey Veprikov, Alexander Afanasiev, Anton Khritankov,
- Abstract summary: We introduce a repeated learning process to jointly describe several phenomena attributed to unintended hidden feedback loops.
A distinctive feature of such repeated learning setting is that the state of the environment becomes causally dependent on the learner itself over time.
We present a novel dynamical systems model of the repeated learning process and prove the limiting set of probability distributions for positive and negative feedback loop modes.
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Widespread deployment of societal-scale machine learning systems necessitates a thorough understanding of the resulting long-term effects these systems have on their environment, including loss of trustworthiness, bias amplification, and violation of AI safety requirements. We introduce a repeated learning process to jointly describe several phenomena attributed to unintended hidden feedback loops, such as error amplification, induced concept drift, echo chambers and others. The process comprises the entire cycle of obtaining the data, training the predictive model, and delivering predictions to end-users within a single mathematical model. A distinctive feature of such repeated learning setting is that the state of the environment becomes causally dependent on the learner itself over time, thus violating the usual assumptions about the data distribution. We present a novel dynamical systems model of the repeated learning process and prove the limiting set of probability distributions for positive and negative feedback loop modes of the system operation. We conduct a series of computational experiments using an exemplary supervised learning problem on two synthetic data sets. The results of the experiments correspond to the theoretical predictions derived from the dynamical model. Our results demonstrate the feasibility of the proposed approach for studying the repeated learning processes in machine learning systems and open a range of opportunities for further research in the area.
Related papers
- Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - Modeling Systems with Machine Learning based Differential Equations [0.0]
We propose the design of time-continuous models of dynamical systems as solutions of differential equations.
Our results suggest that this approach can be an useful technique in the case of synthetic or experimental data.
arXiv Detail & Related papers (2021-09-09T19:10:46Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems exhibiting complex-temporal behaviors.
We propose a Deep Learning framework to resolve the differences between the true dynamics of the system and the dynamics given by a model of the system that is either inaccurately or inadequately described.
arXiv Detail & Related papers (2020-08-23T04:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.