論文の概要: Using Human-Guided Causal Knowledge for More Generalized Robot Task
Planning
- arxiv url: http://arxiv.org/abs/2110.04664v1
- Date: Sat, 9 Oct 2021 23:46:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-16 20:07:36.426986
- Title: Using Human-Guided Causal Knowledge for More Generalized Robot Task
Planning
- Title(参考訳): ロボットタスク計画におけるヒューマンガイド型因果知識の利用
- Authors: Semir Tatlidil (1), Yanqi Liu (1), Emily Sheetz (2), R. Iris Bahar
(1), Steven Sloman (1) ((1) Brown University, (2) University of Michigan)
- Abstract要約: AIとは異なり、人間は移動可能なソリューションを見つけることに精通している。
我々は、ロボットが新しい環境に一般化できるソリューションを見つけるのを助けるために、人間の指導による因果知識を利用することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major challenge in research involving artificial intelligence (AI) is the
development of algorithms that can find solutions to problems that can
generalize to different environments and tasks. Unlike AI, humans are adept at
finding solutions that can transfer. We hypothesize this is because their
solutions are informed by causal models. We propose to use human-guided causal
knowledge to help robots find solutions that can generalize to a new
environment. We develop and test the feasibility of a language interface that
na\"ive participants can use to communicate these causal models to a planner.
We find preliminary evidence that participants are able to use our interface
and generate causal models that achieve near-generalization. We outline an
experiment aimed at testing far-generalization using our interface and describe
our longer terms goals for these causal models.
- Abstract(参考訳): 人工知能(AI)研究における大きな課題は、さまざまな環境やタスクに一般化可能な問題に対する解決策を見つけるアルゴリズムの開発である。
AIとは異なり、人間は移動可能なソリューションを見つけることに精通している。
これは、それらの解が因果モデルによって通知されるためである。
我々はロボットが新しい環境に一般化できる解決策を見つけるのを助けるために、人間主導の因果知識を使うよう提案する。
参加者がこれらの因果関係モデルをプランナーに伝達するために使用できる言語インターフェースの実現可能性を開発し,検証する。
参加者が私たちのインターフェースを使い、ほぼ一般化できる因果モデルを生成することができるという予備的証拠を見出した。
我々は,我々のインタフェースを用いた遠方一般化テストを目的とした実験を概説し,これらの因果モデルに対する長期的目標について述べる。
関連論文リスト
- Utilizing Human Behavior Modeling to Manipulate Explanations in AI-Assisted Decision Making: The Good, the Bad, and the Scary [19.884253335528317]
AIモデルの最近の進歩は、人間の意思決定プロセスへのAIベースの意思決定支援の統合を高めている。
AIによる意思決定の可能性を完全に解き放つために、研究者たちは、人間がAIレコメンデーションを最終決定にどのように組み込むかをコンピュータでモデル化した。
より適切にAIレコメンデーションに頼れるように、人間の意思決定者にAIの説明を提供することは、一般的な慣習となっている。
論文 参考訳(メタデータ) (2024-11-02T18:33:28Z) - Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.55963742878684]
我々は,デザイナやディベロッパの参照として使用できる,さまざまなユーザインタラクションパターンのコンペレーションを作ることを目指している。
また、生成AIアプリケーションの設計についてもっと学ぼうとする人たちの参入障壁を低くしようと努力しています。
論文 参考訳(メタデータ) (2024-10-28T23:10:06Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face [85.25054021362232]
大規模言語モデル(LLM)は、言語理解、生成、相互作用、推論において例外的な能力を示した。
LLMは、複雑なAIタスクを解決するために既存のAIモデルを管理するコントローラとして機能する可能性がある。
本稿では,機械学習コミュニティのさまざまなAIモデルを接続するLLMエージェントであるHuggingGPTを紹介する。
論文 参考訳(メタデータ) (2023-03-30T17:48:28Z) - Causal Discovery of Dynamic Models for Predicting Human Spatial
Interactions [5.742409080817885]
本稿では,人間とロボットの空間的相互作用をモデル化するための因果探索手法を提案する。
最先端の因果探索アルゴリズムを初めて活用するために、新しい方法と実用的な解決策について議論する。
論文 参考訳(メタデータ) (2022-10-29T08:56:48Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Towards Involving End-users in Interactive Human-in-the-loop AI Fairness [1.889930012459365]
人工知能(AI)における公正性の確保は、遠縁な応用においてバイアスや差別に対処するために重要である。
最近の研究は、人間が公正さを判断する方法と、AIモデルを公平にするために機械学習の専門家(ML)をサポートする方法について調査し始めている。
我々の研究は、通常のエンドユーザが潜在的公正性の問題を特定することができる、解釈可能でインタラクティブなヒューマン・イン・ザ・ループ・インタフェースの設計について検討している。
論文 参考訳(メタデータ) (2022-04-22T02:24:11Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。