Surrogate-Assisted Reference Vector Adaptation to Various Pareto Front
Shapes for Many-Objective Bayesian Optimization
- URL: http://arxiv.org/abs/2110.04689v1
- Date: Sun, 10 Oct 2021 03:05:12 GMT
- Title: Surrogate-Assisted Reference Vector Adaptation to Various Pareto Front
Shapes for Many-Objective Bayesian Optimization
- Authors: Nobuo Namura
- Abstract summary: We propose a surrogate-assisted reference vector adaptation (SRVA) method to solve expensive multi- and many-objective optimization problems.
The proposed algorithm is compared with two other MBO algorithms by applying them to benchmark problems.
Experimental results show that the proposed algorithm outperforms the other two in the problems whose objective functions are reasonably approximated by the Kriging models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a surrogate-assisted reference vector adaptation (SRVA) method to
solve expensive multi- and many-objective optimization problems with various
Pareto front shapes. SRVA is coupled with a multi-objective Bayesian
optimization (MBO) algorithm using reference vectors for scalarization of
objective functions. The Kriging surrogate models for MBO is used to estimate
the Pareto front shape and generate adaptive reference vectors uniformly
distributed on the estimated Pareto front. We combine SRVA with expected
improvement of penalty-based boundary intersection as an infill criterion for
MBO. The proposed algorithm is compared with two other MBO algorithms by
applying them to benchmark problems with various Pareto front shapes.
Experimental results show that the proposed algorithm outperforms the other two
in the problems whose objective functions are reasonably approximated by the
Kriging models. SRVA improves diversity of non-dominated solutions for these
problems with continuous, discontinuous, and degenerated Pareto fronts.
Besides, the proposed algorithm obtains much better solutions from early stages
of optimization especially in many-objective problems.
Related papers
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Combining Kernelized Autoencoding and Centroid Prediction for Dynamic
Multi-objective Optimization [3.431120541553662]
This paper proposes a unified paradigm, which combines the kernelized autoncoding evolutionary search and the centriod-based prediction.
The proposed method is compared with five state-of-the-art algorithms on a number of complex benchmark problems.
arXiv Detail & Related papers (2023-12-02T00:24:22Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
We present a novel adaptive optimization algorithm for black-box multi-objective optimization problems with binary constraints.
Our method is based on probabilistic regression and classification models, which act as a surrogate for the optimization goals.
We also present a novel ellipsoid truncation method to speed up the expected hypervolume calculation.
arXiv Detail & Related papers (2020-08-27T09:15:02Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Decomposition in Decision and Objective Space for Multi-Modal
Multi-Objective Optimization [15.681236469530397]
Multi-modal multi-objective optimization problems (MMMOPs) have multiple subsets within the Pareto-optimal Set.
Prevalent multi-objective evolutionary algorithms are not purely designed to search for multiple solution subsets, whereas, algorithms designed for MMMOPs demonstrate degraded performance in the objective space.
This motivates the design of better algorithms for addressing MMMOPs.
arXiv Detail & Related papers (2020-06-04T03:18:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.