論文の概要: Density-Based Clustering with Kernel Diffusion
- arxiv url: http://arxiv.org/abs/2110.05096v3
- Date: Thu, 14 Oct 2021 04:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-15 10:41:51.114436
- Title: Density-Based Clustering with Kernel Diffusion
- Title(参考訳): カーネル拡散を用いた密度ベースクラスタリング
- Authors: Chao Zheng, Yingjie Chen, Chong Chen, Jianqiang Huang, Xian-Sheng Hua
- Abstract要約: 単位$d$次元ユークリッド球のインジケータ関数に対応するナイーブ密度は、密度に基づくクラスタリングアルゴリズムで一般的に使用される。
局所分布特性と滑らかさの異なるデータに適応する新しいカーネル拡散密度関数を提案する。
- 参考スコア(独自算出の注目度): 59.4179549482505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding a suitable density function is essential for density-based clustering
algorithms such as DBSCAN and DPC. A naive density corresponding to the
indicator function of a unit $d$-dimensional Euclidean ball is commonly used in
these algorithms. Such density suffers from capturing local features in complex
datasets. To tackle this issue, we propose a new kernel diffusion density
function, which is adaptive to data of varying local distributional
characteristics and smoothness. Furthermore, we develop a surrogate that can be
efficiently computed in linear time and space and prove that it is
asymptotically equivalent to the kernel diffusion density function. Extensive
empirical experiments on benchmark and large-scale face image datasets show
that the proposed approach not only achieves a significant improvement over
classic density-based clustering algorithms but also outperforms the
state-of-the-art face clustering methods by a large margin.
- Abstract(参考訳): DBSCANやDPCのような密度に基づくクラスタリングアルゴリズムには,適切な密度関数の探索が不可欠である。
これらのアルゴリズムでは、単位 $d$-次元ユークリッド球の表示関数に対応するナイーブ密度が一般的に用いられる。
このような密度は、複雑なデータセットの局所的な特徴を捉えるのに苦しむ。
そこで本研究では,局所分布特性と滑らかさの異なるデータに適応した新しい核拡散密度関数を提案する。
さらに,線形時間と空間で効率的に計算できるサロゲートを開発し,核拡散密度関数に漸近同値であることを証明した。
ベンチマークおよび大規模顔画像データセットに関する広範囲な実験により、提案手法は従来の密度ベースのクラスタリングアルゴリズムよりも大幅に改善されるだけでなく、最先端の顔クラスタリング手法を大きなマージンで上回っていることが示された。
関連論文リスト
- Clustering Based on Density Propagation and Subcluster Merging [92.15924057172195]
本稿では,クラスタ数を自動的に決定し,データ空間とグラフ空間の両方に適用可能な密度に基づくノードクラスタリング手法を提案する。
二つのノード間の距離を計算する従来の密度クラスタリング法とは異なり,提案手法は伝播過程を通じて密度を決定する。
論文 参考訳(メタデータ) (2024-11-04T04:09:36Z) - Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
本稿では,DDFP(Dedentity-Descending Feature Perturbation)という特徴レベルの一貫性学習フレームワークを提案する。
半教師付き学習における低密度分離仮定にインスパイアされた私たちの重要な洞察は、特徴密度はセグメンテーション分類器が探索する最も有望な方向の光を放つことができるということである。
提案したDFFPは、機能レベルの摂動に関する他の設計よりも優れており、Pascal VOCとCityscapesのデータセット上でのアートパフォーマンスの状態を示している。
論文 参考訳(メタデータ) (2024-03-11T06:59:05Z) - Empirical Density Estimation based on Spline Quasi-Interpolation with
applications to Copulas clustering modeling [0.0]
密度推定は、様々な分野において、基礎となるデータの分布をモデル化し理解するための基礎的な手法である。
本稿では,擬似補間による密度の単変量近似を提案する。
提案アルゴリズムは人工データセットと実データセットで検証される。
論文 参考訳(メタデータ) (2024-02-18T11:49:38Z) - DECWA : Density-Based Clustering using Wasserstein Distance [1.4132765964347058]
空間密度と確率的アプローチに基づく新しいクラスタリングアルゴリズムを提案する。
提案手法は, 様々なデータセットにおいて, 最先端の密度に基づくクラスタリング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-25T11:10:08Z) - GFDC: A Granule Fusion Density-Based Clustering with Evidential
Reasoning [22.526274021556755]
密度に基づくクラスタリングアルゴリズムは任意の形状のクラスタを検出できるため、広く適用されている。
本稿では,GFDCを用いた粒界融合密度クラスタリングを提案する。
サンプルの局所密度と大域密度は、まずスパース度測定によって測定される。
次に、情報グラニュラーを高密度および低密度領域に生成し、大きな密度差を持つクラスタの処理を支援する。
論文 参考訳(メタデータ) (2023-05-20T06:27:31Z) - Fast Density Estimation for Density-based Clustering Methods [3.8972699157287702]
密度に基づくクラスタリングアルゴリズムは、パターン認識や機械学習におけるクラスタの発見に広く利用されている。
密度に基づくアルゴリズムのロバスト性は、隣人を見つけ、時間を要する各点の密度を計算することによって大きく支配される。
本稿では, 高速主成分分析による密度に基づくクラスタリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-23T13:59:42Z) - Featurized Density Ratio Estimation [82.40706152910292]
本研究では,2つの分布を推定前の共通特徴空間にマッピングするために,可逆生成モデルを活用することを提案する。
この偉業化は、学習された入力空間の密度比が任意に不正確な場合、潜在空間において密度が密接な関係をもたらす。
同時に、特徴写像の可逆性は、特徴空間で計算された比が入力空間で計算された比と同値であることを保証する。
論文 参考訳(メタデータ) (2021-07-05T18:30:26Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
密な相関体積表現は冗長であり、その中の要素のほんの一部で正確なフロー推定が達成できることを示した。
実験により,高い精度を維持しつつ計算コストとメモリ使用量を大幅に削減できることを示した。
論文 参考訳(メタデータ) (2021-04-05T21:44:00Z) - A fast and efficient Modal EM algorithm for Gaussian mixtures [0.0]
クラスタリングへのモーダルアプローチでは、クラスタは基礎となる確率密度関数の局所的な最大値として定義される。
モーダルEMアルゴリズムは、任意の密度関数の局所的な最大値を特定するイテレーティブな手順である。
論文 参考訳(メタデータ) (2020-02-10T08:34:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。